Journal of Physical Chemistry A, Vol.112, No.38, 9005-9011, 2008
An LX-10 kinetic model calibrated using simulations of multiple small-scale thermal safety tests
A new chemical kinetic model for the beta-delta transition and decomposition of LX-10 (95% octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, 5% Viton A binder) is presented here. This model implements aspects of previous kinetic models but calibrates the model parameters to data sets of three experiments: differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and one-dimensional time to explosion (ODTX). The calibration procedure contains three stages: one stage uses open-pan DSC and TGA to develop a base reaction for formation of heavy gases, a second stage features closed-pan DSC to ascertain the autocatalytic behavior of reactant gases attacking the solid explosive, and a final stage adjusts the rate for the breakdown of heavy reactant gases using ODTX experimental data. The resultant model presents a large improvement in the agreement between simulated DSC and TGA results and their respective experiments while maintaining the same level of agreement with ODTX, scaled thermal explosion, and laser heating explosion times when compared to previous models.