화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.112, No.30, 7115-7123, 2008
Toward more efficient CCSD(T) calculations of intermolecular interactions in model hydrogen-bonded and stacked dimers
Interaction energies of the model H-bonded complexes, the formamide and formamidine dimers, as well as the stacked formaldehyde and ethylene dimers are calculated by the coupled cluster CCSD(T) method. These systems serve as a model for H-bonded and stacking interactions, typical in molecules participating in biological systems. We use the optimized virtual orbital space (OVOS) technique, by which the dimension of the space of virtual orbitals in coupled cluster CCSD(T) calculations can be significantly reduced. We demonstrate that when the space of virtual orbitals is reduced to 50% of the full space, which means reducing computational demands by I order of magnitude, the interaction energies for both H-bonded and stacked dimers are affected by no more than 0.1 kcal/mol. This error is much smaller than the error when interaction energies are calculated using limited basis sets.