화학공학소재연구정보센터
IEE Proceedings-Control Theory & Applications, Vol.146, No.5, 406-414, 1999
Parameter estimation based on stacked regression and evolutionary algorithms
A new parameter-estimation algorithm, which minimises the cross-validated prediction error for linear-in-the-parameter models, is proposed, based on stacked regression and an evolutionary algorithm. It is initially shown that cross-validation is very important for prediction in linear-in-the-parameter models using a criterion called the mean dispersion error (MDE). Stacked regression, which can be regarded as a sophisticated type of cross-validation, is then introduced based on an evolutionary algorithm, to produce a new parameter-estimation algorithm, which preserves the parsimony of a concise model structure that is determined using the forward orthogonal least-squares (OLS) algorithm. The PRESS prediction errors ale used for cross-validation, and the sunspot and Canadian lynx time series are used to demonstrate the new algorithms.