Journal of Physical Chemistry A, Vol.112, No.30, 6808-6810, 2008
A technique for in situ monitoring of crystallization from solution by solid-state C-13 CPMAS NMR spectroscopy
We report a technique for carrying out in situ solid-state NMR studies of crystallization from solution, allowing the evolution of different solid state structures (polymorphs) produced during the crystallization process to be identified. The technique exploits selectivity in NMR properties (specifically, the efficiency of cross-polarization from H-1 to C-13) between molecules in the solid and solution states, such that the first solid particles produced during the crystallization process are observed selectively, without detecting any signal from dissolved solute (or solvent) molecules. The application of the technique is demonstrated to reveal new insights concerning an isotope effect on the polymorphic outcome of crystallization of glycine from water. As revealed by this example, the in situ solid-state NMR approach reported here creates significant new opportunities for probing and understanding details of the evolution of solid state structures produced during crystallization from solution.