화학공학소재연구정보센터
Journal of Non-Newtonian Fluid Mechanics, Vol.154, No.2-3, 179-206, 2008
A finite difference technique for solving the Oldroyd-B model for 3D-unsteady free surface flows
This work presents a numerical method for solving three-dimensional (3D) viscoelastic unsteady free surface flows governed by the Oldroyd-B constitutive equation. It is an extension of the two-dimensional (2D) technique introduced by Tome et al. [M.F. Tome. N. Mangiavacchi,J.A. Cuminato, A. Castelo, S. McKee, A numerical technique for solving unsteady viscoelastic free surface flows, J. Non-Newt. Fluid Mech. 106 (2002) 61-106]. The governing equations are solved by a finite difference method on a 3D-staggered grid. Marker particles are employed to describe the fluid providing both visualization and the location of the free surface. The numerical technique is validated by using an exact solution of the flow of an Oldroycl-B fluid inside a 3D-pipe. Numerical results include the simulation of the transient extrudate swell and jet buckling. (C) 2008 Elsevier B.V. All rights reserved.