화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.21, No.1, 29-33, February, 2010
B, C, N, F 원소 다중도핑된 TiO2의 가시광 광촉매 분해 반응
Photo-catalytic Degradation on B-, C-, N-, and F Element co-doped TiO2 under Visible-light Irradiation
E-mail:
초록
본 연구에서는 여러 가지 열처리 온도에서 다성분 도핑에 의한 광촉매의 밴드갭 저감 및 가시광 광분해 효과를 알아보고자 tetraethylammonium tetrafluoroborate (TEATFB)로 B, C, N, F 등이 동시에 도핑된 TiO2 광촉매를 제조하였다. 도핑된 TiO2 광촉매가 가시광선영역에서 분해되는 정도를 확인하기 위해서 태양광에 조사하여 rhodamine B와 acridine orange로 염료분해 실험을 수행하였다. XRD 결과 800 ℃ 이하에서 열처리된 TiO2 광촉매는 anatase 구조가 존재하고 있음을 알수 있었다. XPS 분석을 통하여 광활성에 영향을 미치는 B, C, N, F의 결합구조를 확인하였고 UV-DRS 결과로부터 다성분 도핑된 TiO2 광촉매의 밴드 갭이 2.98 eV로 줄어든 것을 알 수 있었다. 다성분 도핑 TiO2의 태양광 조사에 의한 UV-Vis 결과에서 acridine orange에 대한 광분해 효과가 도핑되지 않은 샘플에 비해 1.61배 증가함을 알 수 있었다. 특히, 다성분이 동시 도핑되고 700 ℃에서 열처리된 샘플이 acridine orange과 rhodamine B 두 가지 염료 모두에서 가장 좋은 광분해 효과를 보여 주었다.
In this study, boron, carbon, nitrogen and fluorine co-doped TiO2 photocatalysts using tetraethylammonium tetrafluoroborate (TEATFB) have been prepared by different heat treatment temperatures to decrease the band gap. To explore the visible light photocatalytic activity of the novel low.band gap TiO2 photocatalyst, the removal of two dyes was investigated, namely, acridine orange and rhodamine B. XRD patterns demonstrate that the samples calcined at temperatures up to 800 ℃ clearly show anatase peaks. The XPS results show that all the doped samples contain N, C, B and F elements and the doped TiO2 shows the shift in the band gap transition down to 2.98 eV as UV-DRS results. In these UV-Vis results, photocatalytic activity of the doped TiO2 is 1.61 times better than undoped TiO2. Specially, excellent photoactivity results were obtained in the case of samples treated at 700 ℃.
  1. Mishra T, Hait J, Aman N, Gunjan M, Mahato B, Jana RK, J. Colloid Interface Sci., 327(2), 377 (2008)
  2. Yun SM, Palanivelu K, Kim YH, Kang PH, Lee YS, J. Ind. Eng. Chem., 14(5), 667 (2008)
  3. Song SH, Kang MS, J. Ind. Eng. Chem., 14(6), 785 (2008)
  4. Schiavello M, Dordrecht H, Photoelectrochemistry, Photocatalysis, and Photoreactors: Fundamentals and Developments, Kluwer Academic, Boston, MA (1985)
  5. Bhatkhande DS, Pangarkar VG, Beenackers AA, J. Chem. Technol. Biotechnol., 77, 102 (2001)
  6. Moon J, Yun CY, Chung KW, Kang MS, Yi J, Catal. Today, 87(1-4), 77 (2003)
  7. Chiou CH, Juang RS, J. Hazard. Mater., 149(1), 1 (2007)
  8. Yamashita H, Honda M, Harada M, Ichihashi Y, Anpo M, Hirao T, Itoh N, Iwamoto N, J. Phys. Chem. B, 102(52), 10707 (1998)
  9. Palanivelu K, Im JS, Lee YS, Carbon Sci., 8, 214 (2007)
  10. Qiu X, Burda C, Chem. Phys., 339, 1 (2007)
  11. Xu TH, Song CL, Liu Y, Han GR, J. Zhejiang Univ. Sci. B, 7, 299 (2006)
  12. Gombac V, De Rogatis L, Gasparotto A, Vicario G, Montini T, Barreca D, Balducci G, Fornasiero P, Tondello E, Graziani M, Chem. Phys., 339, 111 (2007)
  13. Li D, Haneda H, Hishita S, Ohashi N, Chem. Mater., 17, 2588 (2005)
  14. Yu JG, Zhao XJ, Zhao QN, Wang G, Mater. Chem. Phys., 68(1-3), 253 (2001)
  15. Park H, Choi WY, J. Phys. Chem. B, 108(13), 4086 (2004)
  16. Li D, Haneda H, Hishita S, Ohashi N, Chem. Mater., 17, 2596 (2005)
  17. Balek V, Li D, Subrt J, Vecernikova E, Hishita S, Mitsuhashi T, Haneda H, J. Phys. Chem. Solids., 68, 770 (2007)
  18. Chen DM, Jiang ZY, Geng JQ, Wang Q, Yang D, Ind. Eng. Chem. Res., 46(9), 2741 (2007)
  19. Reddy KM, Baruwati B, Jayalakshmi M, Rao MM, Manorama SV, J. Solid State Chem., 178, 3352 (2005)
  20. Chen D, Yang D, Wang Q, Jiang ZY, Ind. Eng. Chem. Res., 45(12), 4110 (2006)
  21. Grey IE, Li C, Macrae CC, J. Solid State Chem., 127, 240 (1996)
  22. Chen C, Bai H, Chang S, Chang C, Den W, J. Nanopart. Res., 9, 365 (2006)
  23. Sakthivel S, Kisch H, Chem. Phys. Chem., 4, 487 (2003)
  24. Swanepoel R, J. Phys. E, 16, 1214 (1983)
  25. Giannakopoulou T, Todorova N, Trapalis C, Vaimakis T, Mater. Lett., 61, 4474 (2007)
  26. Yamaki T, Sumita T, Yamamoto S, J. Mater. Sci. Lett., 21(1), 33 (2002)
  27. Izumi F, Bull. Chem. Soc. Jpn., 51, 1771 (1978)
  28. Lettmann C, Hildenbrand K, Kisch H, Macyk W, Maier WF, Appl. Catal. B: Environ., 32(4), 215 (2001)
  29. Lee MS, Lee GD, Ju CS, Lim KT, Hong SS, J. Korean Ind. Eng. Chem., 13(3), 216 (2002)
  30. Stengl V, Bakardjieva S, Murafa N, Mater. Chem. Phys., 114(1), 217 (2009)
  31. Yang XX, Cao CD, Erickson L, Hohn K, Maghirang R, Klabunde K, J. Catal., 260(1), 128 (2008)