Korean Journal of Chemical Engineering, Vol.27, No.2, 416-421, February, 2010
Scaling behavior of a wormlike polyelectrolyte chain by mesoscopic Brownian dynamics simulations
E-mail:
The scaling prediction of semiflexible wormlike chain was examined by applying Brownian dynamics simulation, which goes beyond other simulations as they do not consider both the hydrodynamic interaction between pairs of beads and long-range screening effect. The rheological behavior of the intrinsic viscosity was properly implemented by combining with optimized model parameters for the polyelectrolyte xanthan, and the validity of the simulation
was previously confirmed. Scaling plots present that the structure and diffusion of polyelectrolyte chains depend sensitively on the Debye screening effect. In the scaling of end-to-end distance R(E), radius of gyration R(G), and translational diffusivity D(T) with respect to the number of beads N(b), the Flory-Edwards exponent ν was estimated as up to 1.0, which should be a really higher level compared to the case of the flexible neutral chains with self-avoiding walk in good solvent. Unlike the case of spherically averaged structure factor, scaling plots in that parallel to the first principal axis of gyration could not clearly be identified with a well defined exponent. With increasing screening effect, pronounced oscillations observed in the case of lower screening tend to smear out.
Keywords:Polyelectrolyte;Scaling Theory;Chain Conformation;Coarse-graining;Brownian Dynamics Simulation
- Kremer K, Binder K, Comput. Phys. Rep., 7, 259 (1988)
- Hoagland DA, Muthukumar M, Macromolecules, 25, 6696 (1992)
- Holm C, Kekicheff P, Podgornik R, Eds., Electrostatic effects in soft matter and biophysics, Vol. 46, NATO Science Series II: Mathematics, Physics and Chemistry, Kluwer, Dordrecht (2001)
- Dobrynin AV, Rubinstein M, Prog. Polym. Sci., 30, 1049 (2005)
- Daoud M, de Gennes PG, J. Phys. France, 38, 85 (1977)
- Doi M, Edwards SF, The theory of polymer dynamics, Clarendon, Oxford (1986)
- Li B, Madras N, Sokal AD, J. Stat. Phys., 80, 661 (1995)
- Smith DE, Perkins TT, Chu S, Macromolecules, 29(4), 1372 (1996)
- Flory PJ, Principles of polymer chemistry, Cornell Univ. Press, NY (1953)
- Odijk T, J. Polym. Sci.: Polym. Phys. Ed., 15, 477 (1977)
- van Vliet JH, ten Brinke G, J. Chem. Phys., 93, 1436 (1990)
- Balducci A, Mao P, Han JY, Doyle PS, Macromolecules, 39(18), 6273 (2006)
- Ottinger HC, Stochastic processes in polymeric fluids: Tools and examples for developing simulation algorithms, Springer, Heidelberg (1996)
- Jian HA, Vologodskii V, Schlick T, J. Comput. Phys., 136, 168 (1997)
- Hur JS, Shaqfeh ESG, Larson RG, J. Rheol., 44(4), 713 (2000)
- Jendrejack RM, Schwartz DC, Graham MD, de Pablo JJ, J. Chem. Phys., 119(2), 1165 (2003)
- Jendrejack RM, Schwartz DC, de Pablo JJ, Graham MD, J. Chem. Phys., 120(5), 2513 (2004)
- Chen YL, Graham MD, de Pablo JJ, Randall GC, Gupta M, Doyle PS, Phys. Rev. E, 70, 060901R (2004)
- Jeon J, Chun MS, J. Chem. Phys., 126, 154904 (2007)
- Paradossi G, Brant DA, Macromolecules, 15, 874 (1982)
- Sato T, Norisuye T, Fujita H, Macromolecules, 17, 2696 (1984)
- Chun MS, Kim C, Lee DE, Phys. Rev. E, 79, 051919 (2009)
- Dunweg B, Kremer K, J. Chem. Phys., 99, 6983 (1993)
- Micka U, Kremer K, Phys. Rev. E, 54, 2653 (1996)
- Lin PK, Fu CC, Chen YL, Chen YR, Wei PK, Kuan CH, Fann WS, Phys. Rev. E, 76, 011806 (2007)
- Ermak DL, McCammon JA, J. Chem. Phys., 69, 1352 (1978)
- Rotne J, Prager S, J. Chem. Phys., 50, 4831 (1969)
- Warner HR, Ind. Eng. Chem. Fund., 11, 379 (1972)
- Chun MS, Park OO, Macromol. Chem. Phys., 195, 701 (1994)
- Stokke BT, Elgsaeter A, Skjak-Brjek G, Smidsrød O, Carbohydr. Res., 160, 13 (1987)
- Rochefort WE, Middleman S, J. Rheol., 31, 337 (1987)
- Manning GS, J. Chem. Phys., 51, 924 (1969)
- Dhar A, Chaudhuri D, Phys. Rev. Lett., 89, 065502 (2002)