화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.170, No.1, 13-21, 2009
Meteorological variations of PM2.5/PM10 concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey
Airborne particulate matter (PM2.5 and PM10) concentrations were measured in Zonguldak, Turkey from January to December 2007, using dichotomous Partisol 2025 sampler. Collected particulate matter was analyzed for 14 selected polycyclic aromatic hydrocarbons (PAHs) by high-performance liquid chromatography with fluorescence detection (HPLC-FL). The seasonal variations of PM2.5 and PM10 concentrations were investigated together with their relationships with meteorological parameters. The maximum daily concentrations of PM2.5 and PM10 reached 83.3 mu g m(-3) and 116.7 mu g m(-3) in winter, whereas in summer, they reached 32.4 mu g m(-3) and 66.7 mu g m(-3), respectively. Total concentration of PM10-associated PAHs reached 492.4 ng m(-3) in winter and 26.0 ng m(-3) in summer times. The multiple regression analysis was performed to predict total PM2.5- and PM10-associated PAHs and benzo(a)pyrene-equivalent (BaPE) concentrations with respect to meteorological parameters and particulate mass concentrations with the determination coefficients (R-2) of 0.811, 0.805 and 0.778, respectively. The measured mean values of concentrations of total PM2.5- and PM10-associated PAHs were found to be 88.4 ng m(-3) and 93.7 ng m(-3) while their predicted mean values were found to be 92.5 ng m(-3) and 98.2 ng m(-3), respectively. In addition, observed and predicted mean concentration values of PM2.5-BaPE were found to be 14.1 ng m(-3) and 14.6 ng m(-3). The close annual mean concentrations of measured and predicted total particulate related PAHs imply that the models can be reliably used for future predictions of particulate related PAHs in urban atmospheres especially where fossil fuels are mainly used for heating. (C) 2009 Elsevier B.V. All rights reserved.