화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.164, No.1, 301-309, 2009
Interaction of 2,4,6-trichlorophenol with high carbon iron filings: Reaction and sorption mechanisms
Reductive dehalogenation of 2,4,6-trichlorophenol (2,4,6-TCP) by two types of high carbon iron filings (HCIF), HCIF-1 and HCIF-2 was studied in batch reactors. While the iron, copper, manganese and carbon content of the two types of HCIF was similar, the specific surface area of HCIF-1 and HCIF-2 were 1.944 and 3.418 m(2) g(-1), respectively. During interaction with HCIF-1, 2,4,6-TCP adsorbed on HCIF-1 surface resulting in rapid reduction of aqueous phase 2,4,6-TCP concentration. However, reductive dehalogenation of 2,4,6-TCP was negligible. During interaction between 2,4,6-TCP and HCIF-2, both 2,4,6-TCP adsorption on HCIF-2, and 2,4,6,-TCP dechlorination was observed. 2,4,6-TCP partitioning between solid and aqueous phase could be described by a Freundlich isotherm, while 2,4,6-TCP dechlorination could be described by an appropriate rate expression. A mathematical model was developed for describing the overall interaction of 2,4,6-TCP with HCIF-2, incorporating simultaneous adsorption/desorption and dechlorination reactions of 2,4,6-TCP with the HCIF surface. 2,4-Dichlorophenol (2,4-DCP), 2-chlorophenol (2-CP) and minor amounts of 4-chlorophenol (4-CP) evolved as 2,4,6-TCP dechlorination by-products. The evolved 2,4-DCP partitioned strongly to the HCIF surface. 4-CP and 2-CP accumulated in the aqueous phase. No transformation of 2-CP or 4-CP to phenol was observed. (C) 2008 Published by Elsevier B.V.