화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.163, No.2-3, 1345-1352, 2009
Interaction of malachite green with bovine serum albumin: Determination of the binding mechanism and binding site by spectroscopic methods
The interaction between malachite green (MG) and bovine serum albumin (BSA) under simulative physiological conditions was investigated by the methods of fluorescence spectroscopy, UV-vis absorption and circular dichroism (CD) spectroscopy. Fluorescence data showed that the fluorescence quenching of BSA by MG was the result of the formation of the MG-BSA complex. According to the modified Stern-Volmer equation, the effective quenching constants (K-a) between MG and BSA at four different temperatures were obtained to be 3.734 x 10(4), 3.264 x 10(4), 2.718 x 10(4), and 2.164 x 10(4) L mol(-1), respectively. The enthalpy change (Delta H) and entropy change (Delta S) were calculated to be -27.25 kJ mol(-1) and -11.23 J mol(-1) K-1, indicating that van der Waals force and hydrogen bonds were the dominant intermolecular force in stabilizing the complex. Site marker competitive experiments indicated that the binding of MG to BSA primarily took place in sub-domain IIA. The binding distance (r) between MG and the tryptophan residue of BSA was obtained to be 4.79 nm according to Forster theory of non-radioactive energy transfer. The conformational investigation showed that the presence of MG decreased the alpha-helical content of BSA (from 62.6% to 55.6%) and induced the slight unfolding of the polypeptides of protein, which confirmed some micro-environmental and conformational changes of BSA molecules. (C) 2008 Elsevier B.V. All rights reserved.