Journal of Hazardous Materials, Vol.157, No.2-3, 587-598, 2008
Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+
Alkali activation of fly ash by sodium silicate solutions, forming geopolymeric binders, provides a potential means of treating wastes containing heavy metals. Here, the effects on geopolymer structure of contamination of geopolymers by Cr(VI), Cd(II) and Pb(II) in the forms of various nitrate and chromate salts are investigated. The addition of soluble salts results in a high extent of dispersal of contaminant ions throughout the geopolymer matrix, however very little change in geopolymer structure is observed when these materials are compared to their uncontaminated counterparts. Successful immobilization of these species will rely on chemical binding either into the geopolymer gel or into other low-solubility (silicate or aluminosilicate) phases. In the case of Pb, the results of this work tentatively support a previous identification of Pb3SiO5 as a potential candidate phase for hosting Pb(II) within the geopolymer structure, although the data are not entirely conclusive. The addition of relatively low levels of heavy metal salts is seen to have little effect on the compressive strength of the geopolymeric material, and in some cases actually gives an increase in strength. Sparingly soluble salts may undergo some chemical conversion due to the highly alkaline conditions prevalent during geopolymerization, and in general are trapped in the geopolymer matrix by a simple physical encapsulation mechanism. Lead is in general very effectively immobilized in geopolymers, as is cadmium in all except the most acidic leaching environments. Hexavalent chromium is problematic, whether added as a highly soluble salt or in sparingly soluble form. (C) 2008 Elsevier B.V. All rights reserved.