화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.157, No.2-3, 293-299, 2008
Adsorptive removal of phenol from aqueous phase by using a porous acrylic ester polymer
The removal of phenol from aqueous solution was examined by using a porous acrylic ester polymer (Amberlite XAD-7) as an adsorbent. Favorable phenol adsorption was observed at acidic solution pH and further increase of solution pH results in a marked decrease of adsorption capacity, and the coexisting inorganic salt NaCl exerts positive effect on the adsorption process. Adsorption isotherms of phenol were linearly correlated and found to be well represented by either the Langmuir or Freundlich isotherm model. Thermodynamic parameters such as changes in the enthalpy (Delta H), entropy (Delta S) and free energy (Delta G) indicate that phenol adsorption onto XAD-7 is an exothermic and spontaneous process in nature, and lower ambient temperature results in more favorable adsorption. Kinetic experiments at different initial solute concentrations were investigated and the pseudo-second-order kinetic model was successfully represented the kinetic data. Additionally, the column adsorption result showed that a complete removal of phenol from aqueous phase can be achieved by XAD-7 beads and the exhausted adsorbent was amenable to an entire regeneration by using ethanol as the regenerant. More interestingly, relatively more volume of hot water in place of ethanol can also achieve a similar result for repeated use of the adsorbent. (c) 2008 Elsevier B.V. All rights reserved.