화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.156, No.1-3, 412-420, 2008
Heavy metal removal from aqueous solutions by activated phosphate rock
The use of natural adsorbent such as phosphate rock to replace expensive imported synthetic adsorbent is particularly appropriate for developing countries such as Tunisia. In this study, the removal characteristics of lead, cadmium, copper and zinc ions from aqueous solution by activated phosphate rock were investigated under various operating variables like contact time, solution pH, initial metal concentration and temperature. The kinetic and the sorption process of these metal ions were compared for phosphate rock (PR) and activated phosphate rock (APR). To accomplish this objective we have: (a) characterized both (PR) and (APR) using different techniques (XRD, IR) and analyses (EDAX, BET-N-2); and, (b) qualified and quantified the interaction of Pb2+, Cd2+, Cu2+ and Zn2+ with these sorbents through batch experiments. Initial uptake of these metal ions increases with time up to 1 h for (PR) and 2 It for (APR), after then, it reaches equilibrium. The maximum sorption obtained for (PR) and (APR) is between pH 2 and 3 for Pb2+ and 4 and 6 for Cd2+, Cu2+ and Zn2+. The effect of temperature has been carried out at 10, 20 and 40 degrees C. The data obtained from sorption isotherms of metal ions at different temperatures fit to linear form of Langmuir sorption equation. The heat of sorption (Delta H degrees), free energy (Delta G degrees) and change in entropy (Delta S degrees) were calculated. They show that sorption of Pb2+, Cd2+, Cu2+ and Zn2+ on (PR) and (APR) an endothermic process. These findings are significant for future using of (APR) for the removal of heavy metal ions from wastewater under realistic competitive conditions in terms of initial heavy metals, concentrations and pH. (C) 2007 Elsevier B.V. All rights reserved.