화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.336, No.1, 260-267, 2009
PTFE/polyamide thin-film composite membranes using PTFE films modified with ethylene diamine polymer and interfacial polymerization: Preparation and pervaporation application
Plasma polymerization of ethylene diamine (EDA) on PTFE film surfaces is applied to modify PTFE surfaces to become hydrophilic and to incorporate amino groups onto PTFE surfaces. The surface-modified PTFE films are utilized as substrates for interfacial polymerization of EDA and trimesoyl chloride to prepare PTFE/polyamide thin-film composite (TFC) membranes. The effect of plasma power for plasma polymerization on the morphology and performances of the PTFE/PA TFC membranes are examined and discussed. The presence of amino groups on the PTFE substrates provides chemical linkages between PTFE and PA layers in interfacial polymerization to make the PTFE/PA TFC membranes are stable for pervaporation separations. A high permeation flux of 1910 g/hm(2) and a separation factor of 290 are observed with the PTFE/PA TFC membranes for pervaporation dehydration on a 70 wt% isopropanol aqueous solution at 70 degrees C. This approach explores a new method to prepare PTFE-based TFC membranes via interfacial polymerizations. The prepared TFC membranes could be potentially utilized in pervaporation and nanofiltration separations. (C) 2009 Elsevier Inc. All rights reserved.