Journal of Chemical Technology and Biotechnology, Vol.84, No.3, 316-319, 2009
Separation of fatty acids from binary melts using physical vapour deposition (PVD)
BACKGROUND: The use of fatty acid mixtures, natural biochemical compounds, will be extended to various chemical industries for the production of a wide variety of products, and various mixtures of fatty acids are necessary for production. Separation of a binary fatty acid mixture of lauric acid and myristic acid using physical vapour deposition (PVD) on a cold quartz crystal resonator is examined. The extremely small amount of deposits can be measured with the quartz crystal resonator. The vapour phase is prepared by vaporizing a calculated composition of melt according to the vapour-liquid equilibrium (VILE). RESULTS: The composition of lauric acid in the melt and the melt temperature were utilized as operating variables in the PVD. The growth rate of deposit increases when melt temperature and the composition of lauric acid in the melt are increased. The composition of lauric acid in the deposit is significantly lower than that of the melt of 19% lauric acid, but the composition of lauric acid in the deposit is much higher than that of the melts of 50% and 75% lauric acid. CONCLUSION: The distribution coefficient of lauric acid between solid and vapour phases can be correlated as a function of the growth rate of deposit. The possibility of separation of fatty acid mixtures by PVD is suggested experimentally and theoretically. (C) 2008 Society of Chemical Industry
Keywords:physical vapour deposition (PVD);fatty acids;quartz sensor;distribution coefficient;separation