Journal of Applied Polymer Science, Vol.112, No.3, 1680-1687, 2009
Thermal and Structural Characterization of Nanofibers of Poly(Vinyl Alcohol) Produced by Electrospinning
Poly(vinyl alcohol) (PVOH) was obtained from the alkaline hydrolysis of poly(vinyl acetate) (PVAc). Nonwoven membranes (mats) of PVOH nanofibers were produced by electrospinning of solutions of PVOH in water with and without aluminum chloride. The concentration of the PVOH/water solution was 12.4% w/v. The morphology of the mats was analyzed by scanning electron microscopy (SEM). The thermal properties and the degree of crystallinity of the nanofibers were measured by differential scanning calorimetry (DSC); the crystal structure of the mats was evaluated by wide-angle X-ray diffraction. The best nanofibers were obtained by electrospinning the PVOH/water solution with aluminum chloride (45% w/v) in which an electrical field of 3.0 kV/cm was applied. It was observed that the addition of the aluminum chloride and the increase in the applied electrical field decreased the number-average nanofibers diameters. The mats without aluminum chloride had higher melting temperatures and higher degrees of crystallinity than the mats with the salt. The crystal structure of the mats was found to be monoclinic; however, the mats were neither highly oriented nor have a high degree of crystallinity. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 112: 1680-1687, 2009