화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.109, No.5, 2795-2801, 2008
Toughening of recycled poly(ethylene terephthalate)/glass fiber blends with ethylene-butyl acrylate-glycidyl methacrylate copolymer and maleic anhydride grafted polyethylene-octene rubber
The aim of this study was to improve the toughness of recycled poly(ethylene terephthalate) (PET)/glass fiber (GF) blends through the addition of ethylenebutyl acrylate-glycidyl methacrylate copolymer (EBAGMA) and maleic anhydride grafted polyethylene-octene (POE-g-MAH) individually. The morphology and mechanical properties of the ternary blend were also examined in this study. EBAGMA was more effective in toughening recycled PET/GF blends than POE-g-MAH; this resulted from its better compatibility with PET and stronger fiber/matrix bonding, as indicated by scanning electron microscopy images. The PET/GF/EBAGMA ternary blend had improved impact strength and well-balanced mechanical properties at a loading of 8 wt % EBAGMA. The addition of POE-g-MAH weakened the fiber/matrix bonding due to more POE-g-MAH coated on the GF, which led to weakened impact strength, tensile strength, and flexural modulus. According to dynamic rheometer testing, the use of both EBAGMA and POE-g-MAH remarkably increased the melt storage modulus and dynamic viscosity. Differential scanning calorimetry analysis showed that the addition of EBAGMA lowered the crystallization rate of the PET/GF blend, whereas POE-g-MAH increased it. (C) 2008 Wiley Periodicals, Inc.