화학공학소재연구정보센터
Journal of Applied Electrochemistry, Vol.39, No.5, 593-600, 2009
Powdered activated carbon and carbon paste electrodes: comparison of electrochemical behaviour
Commercial activated carbon (Norit R3ex), de-mineralised with conc. HF and HCl, was oxidised (conc. HNO3) and heat-treated at various temperatures (180, 300 and 420 degrees C). The physicochemical properties of the samples obtained were characterised by selective neutralisation and pH-metric titration of surface functional groups (acid-base properties), thermogravimetry (thermal stability-TG), FTIR spectroscopy (chemical structure) and low-temperature nitrogen adsorption (BET surface area). Thermal treatment of the carbon materials caused the surface functional groups to decompose; in consequence, the chemical properties of the carbon surfaces changed. Cyclic voltammetric studies were carried out on all samples using a powdered activated carbon electrode (PACE) and a carbon paste electrode (CPE), as were electrochemical measurements in aqueous electrolyte solutions (0.1 M HNO3 or NaNO3) in the presence of Cu2+ ions acting as a depolariser. The shapes of the cyclic voltammograms varied according to the form of the electrodes (powder or paste) and to the changes in the surface chemical structure of the carbons. The electrochemical behaviour of the carbons depended on the presence of oxygen-containing surface functional groups. The peak potentials and their charge for the redox reactions of copper ions (Cu2+ <-> Cu+ <-> Cu-0) depended on their interaction with the carbon surface.