Industrial & Engineering Chemistry Research, Vol.48, No.4, 1694-1698, 2009
Zirconium Hydroxide as a Reactive Substrate for the Removal of Sulfur Dioxide
Zirconium hydroxide [Zr(OH)(4)], with a surface area of 365 m(2)/g, was evaluated for its ability to remove SO2 from streams of air at room temperature. The SO2 removal capacity of Zr(OH)(4) was similar to 90 mg SO2 removed per cm(3) bed volume, which is almost an order of magnitude greater than the value achieved for activated carbon and is more than twice the value achieved for activated carbon impregnated with 10% CuO. Temperature-programmed desorption results indicate that SO2 is strongly retained by Zr(OH)(4). X-ray photoelectron spectroscopy results reveals the presence of sulfite (SO32-) species following reaction exposure, which suggests the formation of zirconium sulfite. Although the SO2 removal capacity (volume basis) of Zr(OH)(4) is high, relative to that of impregnated activated carbon, only 10% of the stoichiometric hydroxyl groups are able to contribute to the removal of SO2.