IEEE Transactions on Automatic Control, Vol.54, No.4, 861-865, 2009
Sufficient Conditions for Finite-Time Stability of Impulsive Dynamical Systems
The finite-time stability problem for state-dependent impulsive-dynamical linear systems (SD-IDLS) is addressed in this note. SD-IDLS are a special class of hybrid systems which exhibit jumps when the state trajectory reaches a resetting set. A sufficient condition for finite-time stability of SD-IDLS is provided. S-procedure arguments are exploited to obtain a formulation of this sufficient condition which is numerically tractable by means of Differential Linear Matrix Inequalities. Since such a formulation may be in general more conservative, a procedure which permits to automate its verification, without introduce conservatism, is given both for second order systems, and when the resetting set is ellipsoidal.