Fluid Phase Equilibria, Vol.279, No.2, 92-99, 2009
Prediction of critical transitions of ternary mixtures containing ammonia and n-alkanes
The analysis of the critical transitions that occur in ternary mixtures is important to describe their physical behavior. It also enables the phase behavior of multi-component mixtures at high temperatures to be inferred. The objective of this work was to identify the critical transitions that occur in ternary mixtures containing ammonia and n-alkane. The mixture's critical loci were obtained and tested for stability using thermodynamic criteria expressed in terms of the Helmholtz free energy. Two equations of state were used to represent the Helmholtz free energy: the Carnahan-Starling-Redlich-Kwong (CSRK) and the Simplified Perturbed Hard Chain Theory (SPHCT). In order to identify the existing critical transitions, profiles of the critical loci were calculated along constant compositional ratios chi = x(1)/x(2). Some of the curves depict higher order critical transitions between liquid-liquid and gas-liquid critical point regions, or two different liquid-liquid critical regions. One of the critical transitions found could be considered as a new sub-class within existing classifications for ternary mixtures proposed by Sadus [R.J. Sadus, J. Phys. Chem. 96 (1992) 5197-5202]. (C) 2009 Elsevier B.V. All rights reserved.
Keywords:Mixture critical points;Liquid-liquid equilibrium;Gas-liquid equilibrium;Equations of state;Ternary mixtures