Clean Technology, Vol.15, No.3, 202-209, September, 2009
광전기화학 전지를 위한 질소 도핑된 WO3 박막의 후열처리 효과
Post-annealing Effect of N-incorporated WO3 Films for Photoelectrochemical Cells
E-mail:
초록
질소 도핑된 WO3 (WO3:N) 막을 반응성 RF 마그네트론 스퍼터링을 이용하여 상온에서 증착한 다음,
300oC에서부터 500℃의 온도 구간에서 후열처리(post-annealing)하였다. WO3 내 질소 음이온은 O 2p
valence state와의 mixing effect에 의해 광학적 밴드갭을 줄임으로써 장파장 영역의 빛을 흡수할 수 있었다. 더욱이 350℃ 이상의 후열처리에 의해 WO3:N의 결정성이 크게 향상됨을 발견하였으며, 동일 온도에서 열처리된 순수한 WO3 막보다 광전기화학 특성이 휠씬 우수한 셀 성능을 가짐을 알 수 있었다.
N-incorporated WO3 (WO3:N) films were synthesized using a reactive RF magnetron sputtering
on unheated substrate and then post-annealed at different temperatures from 300 to 500℃ in air. The N anion narrowed optical band gap, due to its mixing effect with the O 2p valence states. Furthermore, it was found that the crystallinity of the WO3:N films was significantly improved by the post-annealing at 350℃ and higher. As a result, the WO3:N films exhibited much better photoelectrochemical performance, compared with pure WO3 films post-annealed at the same temperature.
- Fujishima A, Honda K, Nature, 238, 37 (1972)
- Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y, Science, 293, 269 (2001)
- Khaselev O, Turner JA, Science, 280(5362), 425 (1998)
- Lopez CM, Choi KS, Chem. Commun., 3328 (2005)
- Ghicov A, Tsuchiya H, Macak JM, Schmuki P, Phys. Status. Solidi. A, 203, R28 (2006)
- Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA, Nano Lett., 5, 191 (2005)
- O’Regan B, Gratzel M, Nature, 353, 737 (1991)
- Lee SH, Deshpande R, Parilla PA, Jones KM, To B, Mahan AH, Dillon AC, Adv. Mater., 18(6), 763 (2006)
- Lee SH, Cheong HM, Tracy CE, Mascarenhas A, Pitts JR, Jorgensen G, Deb SK, Appl. Phys. Lett., 76, 3908 (2000)
- Wang Y, Herron N, J. Chem. Phys., 95, 525 (1991)
- Bosch H, Janssen F, Catal. Today, 2, 369 (1988)
- Tao WH, Tsai CH, Sensor. Actuat. B-Chem., 81, 237 (2002)
- Miller EL, Paluselli D, Marsen B, Rocheleau RE, Sol. Energ. Mat. Sol. C., 88, 131 (2005)
- Miller EL, Marsen B, Paluselli D, Rocheleau R, Electrochem. Solid State Lett., 8(5), A247 (2005)
- Santato C, Ulmann M, Augustynski J, J. Phys. Chem. B, 105(5), 936 (2001)
- Berger S, Tsuchiya H, Ghicov A, Schmuki P, Appl. Phys. Lett., 88, 203119 (2006)
- de Tacconi NR, Chenthamarakshan CR, Yogeeswaran G, Watcharenwong A, de Zoysa RS, Basit NA, Rajeshwar K, J. Phys. Chem. B, 110(50), 25347 (2006)
- Paluselli D, Marsen B, Miller EL, Rocheleau RE, Electrochem. Solid State Lett., 8(11), G301 (2005)
- Wang XB, Li DM, Zeng F, Pan F, J. Phys. D Appl. Phys., 38, 4104 (2005)
- Ahn KS, Yan Y, Ai-Jassim M, J. Vac. Sci. Technol. B, 25(4), L23 (2007)
- Han J, Mantas PQ, Senos AMR, J. Eur. Ceram. Soc., 20, 2753 (2000)
- Senda T, Bradt RC, J. Am. Ceram. Soc., 73, 106 (1990)
- Ahn KS, Shet S, Deutsch T, Jiang CS, Yan YF, Al-Jassim M, Turner J, J. Power Sources, 176(1), 387 (2008)
- Granqvist CG, Handbook of Inorganic Electrochromic Materials, Elsevier, New York (1995)
- Ahn KS, Lee SH, Dillon AC, Tracy CE, Pitts R, J. Appl. Phys., 101, 093524 (2007)
- Keis K, Vayssieres L, Rensmo H, Lindquist SE, Hagfeldt A, J. Electrochem. Soc., 148(2), A149 (2001)