화학공학소재연구정보센터
Clean Technology, Vol.15, No.3, 202-209, September, 2009
광전기화학 전지를 위한 질소 도핑된 WO3 박막의 후열처리 효과
Post-annealing Effect of N-incorporated WO3 Films for Photoelectrochemical Cells
E-mail:
초록
질소 도핑된 WO3 (WO3:N) 막을 반응성 RF 마그네트론 스퍼터링을 이용하여 상온에서 증착한 다음, 300oC에서부터 500℃의 온도 구간에서 후열처리(post-annealing)하였다. WO3 내 질소 음이온은 O 2p valence state와의 mixing effect에 의해 광학적 밴드갭을 줄임으로써 장파장 영역의 빛을 흡수할 수 있었다. 더욱이 350℃ 이상의 후열처리에 의해 WO3:N의 결정성이 크게 향상됨을 발견하였으며, 동일 온도에서 열처리된 순수한 WO3 막보다 광전기화학 특성이 휠씬 우수한 셀 성능을 가짐을 알 수 있었다.
N-incorporated WO3 (WO3:N) films were synthesized using a reactive RF magnetron sputtering on unheated substrate and then post-annealed at different temperatures from 300 to 500℃ in air. The N anion narrowed optical band gap, due to its mixing effect with the O 2p valence states. Furthermore, it was found that the crystallinity of the WO3:N films was significantly improved by the post-annealing at 350℃ and higher. As a result, the WO3:N films exhibited much better photoelectrochemical performance, compared with pure WO3 films post-annealed at the same temperature.
  1. Fujishima A, Honda K, Nature, 238, 37 (1972)
  2. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y, Science, 293, 269 (2001)
  3. Khaselev O, Turner JA, Science, 280(5362), 425 (1998)
  4. Lopez CM, Choi KS, Chem. Commun., 3328 (2005)
  5. Ghicov A, Tsuchiya H, Macak JM, Schmuki P, Phys. Status. Solidi. A, 203, R28 (2006)
  6. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA, Nano Lett., 5, 191 (2005)
  7. O’Regan B, Gratzel M, Nature, 353, 737 (1991)
  8. Lee SH, Deshpande R, Parilla PA, Jones KM, To B, Mahan AH, Dillon AC, Adv. Mater., 18(6), 763 (2006)
  9. Lee SH, Cheong HM, Tracy CE, Mascarenhas A, Pitts JR, Jorgensen G, Deb SK, Appl. Phys. Lett., 76, 3908 (2000)
  10. Wang Y, Herron N, J. Chem. Phys., 95, 525 (1991)
  11. Bosch H, Janssen F, Catal. Today, 2, 369 (1988)
  12. Tao WH, Tsai CH, Sensor. Actuat. B-Chem., 81, 237 (2002)
  13. Miller EL, Paluselli D, Marsen B, Rocheleau RE, Sol. Energ. Mat. Sol. C., 88, 131 (2005)
  14. Miller EL, Marsen B, Paluselli D, Rocheleau R, Electrochem. Solid State Lett., 8(5), A247 (2005)
  15. Santato C, Ulmann M, Augustynski J, J. Phys. Chem. B, 105(5), 936 (2001)
  16. Berger S, Tsuchiya H, Ghicov A, Schmuki P, Appl. Phys. Lett., 88, 203119 (2006)
  17. de Tacconi NR, Chenthamarakshan CR, Yogeeswaran G, Watcharenwong A, de Zoysa RS, Basit NA, Rajeshwar K, J. Phys. Chem. B, 110(50), 25347 (2006)
  18. Paluselli D, Marsen B, Miller EL, Rocheleau RE, Electrochem. Solid State Lett., 8(11), G301 (2005)
  19. Wang XB, Li DM, Zeng F, Pan F, J. Phys. D Appl. Phys., 38, 4104 (2005)
  20. Ahn KS, Yan Y, Ai-Jassim M, J. Vac. Sci. Technol. B, 25(4), L23 (2007)
  21. Han J, Mantas PQ, Senos AMR, J. Eur. Ceram. Soc., 20, 2753 (2000)
  22. Senda T, Bradt RC, J. Am. Ceram. Soc., 73, 106 (1990)
  23. Ahn KS, Shet S, Deutsch T, Jiang CS, Yan YF, Al-Jassim M, Turner J, J. Power Sources, 176(1), 387 (2008)
  24. Granqvist CG, Handbook of Inorganic Electrochromic Materials, Elsevier, New York (1995)
  25. Ahn KS, Lee SH, Dillon AC, Tracy CE, Pitts R, J. Appl. Phys., 101, 093524 (2007)
  26. Keis K, Vayssieres L, Rensmo H, Lindquist SE, Hagfeldt A, J. Electrochem. Soc., 148(2), A149 (2001)