Energy & Fuels, Vol.23, 2437-2443, 2009
Influence of the Down-Draft Secondary Air on the Furnace Aerodynamic Characteristics of a Down-Fired Boiler
The operation of down-fired boilers can suffer from problems of high carbon content in the fly ash. This is because horizontally fed secondary air keeps the fuel-rich flow from going deep down into the lower furnace and the recirculation zones in the furnace hopper area are too large. To improve the burnout of coal in down-fired boilers, a retrofit modification was devised and validated. The modification lowered the angle of flow of the secondary air to a down-draft. Experiments were carried out on a single-phase test facility to investigate the influence of down-draft secondary air on the aerodynamic field in the furnace. The depth reached by the fuel-rich flow in the down-furnace, the volume of dead recirculation zone, the angle of the mixed air in the airflow zone of secondary air, and the turbulence intensity in certain cross sections were investigated. The results show when the flow of secondary air was lowered to an optimized angle, the primary air can reach a deeper position in the lower furnace without washing the furnace hopper, and consequently the dead recirculation zone shrinks. The influence of the secondary air ratio distribution on the flow field was also investigated.