Electrophoresis, Vol.30, No.14, 2499-2506, 2009
Transient electrophoretic motion of a charged particle through a converging-diverging microchannel: Effect of direct current-dielectrophoretic force
Transient electrophoretic motion of a charged particle through a converging-diverging microchannel is studied by solving the coupled system of the Navier-Stokes equations for fluid flow and the Laplace equation for electrical field with an arbitrary Lagrangian-Eulerian finite-element method. A spatially non-uniform electric field is induced ill the converging-diverging section, which gives rise to a direct current dielectrophoretic (DEP) force in addition to the electrostatic force acting on the charged particle. As a sequence, the symmetry of the particle velocity and trajectory with respect to the throat is broken. We demonstrate that the predicted particle trajectory shifts due to DEP show quantitative agreements with the existing experimental data. Although converging-diverging microchannels can be used for super fast electrophoresis due to the enhancement of the local electric field, it is shown that large particles may be blocked due to the induced DEP force, which thus must be taken into account in the study of electrophoresis in microfluidic devices where non-uniform electric fields are present.