화학공학소재연구정보센터
Electrophoresis, Vol.29, No.13, 2828-2840, 2008
Pattern recognition in capillary electrophoresis data using dynamic programming in the wavelet domain
A novel approach for CE data analysis based on pattern recognition techniques in the wavelet domain is presented. Low-resolution, denoised electropherograms are obtained by applying several preprocessing algorithms including denoising, baseline correction, and detection of the region of interest in the wavelet domain. The resultant signals are mapped into character sequences using first derivative information and multilevel peak height quantization. Next, a local alignment algorithm is applied on the coded sequences for peak pattern recognition. We also propose 2-D and 3-D representations of the found patterns for fast visual evaluation of the variability of chemical substances concentration in the analyzed samples. The proposed approach is tested on the analysis of intracerebral microdialysate data obtained by CE and LIF detection, achieving a correct detection rate of about 85% with a processing time of less than 0.3 s per 25 000-point electropherogram. Using a local alignment algorithm on low-resolution denoised electropherograms might have a great impact on high-throughput CE since the proposed methodology will substitute automatic fast pattern recognition analysis for slow, human based time-consuming visual pattern recognition methods.