Journal of the Korean Industrial and Engineering Chemistry, Vol.20, No.6, 593-602, December, 2009
슈퍼옥사이드 음이온 라디칼 화학과 응용
Superoxide Anion Radical: Principle and Application
E-mail:
초록
오랫동안 슈퍼옥사이드 음이온 라디칼(superoxide anion radical)은 활성산소(reactive oxygen species, ROS) 화학종으로서 물리화학적 기초 연구에서부터 생명과학(혹은 생명공학) 분야에 이르기까지 상당한 관심의 대상이었다. 최근에는 고도산화공정(advanced oxidation processes, AOP, 혹은 advanced oxidation technologies, AOT)을 이용하는 오염물 제어 분야뿐만 아니라 나노물질에 의한 유해성을 평가하는데 있어서 슈퍼옥사이드 음이온 라디칼이 중요한 화학종으로 주목을 받고 있다. 그럼에도 불구하고 슈퍼옥사이드 음이온 라디칼에 대한 명확한 이해가 부족하여 관련 연구자들 사이에서 불필요한 논쟁과 혼동을 일으키고 있으며 슈퍼옥사이드 음이온 라디칼의 물리화학적 성질에 대한 오해를 가중시키고 있다. 이 글에서는 기존 연구에서 행해진 슈퍼옥사이드 음이온 라디칼의 물리화학적 특성 및 그 반응성에 대해 정리하였고 고도산화공정, 나노물질 및 생명공학 분야 등에서 슈퍼옥사이드 음이온 라디칼이 갖는 중요성을 서술하였다.
For a long time, there is much interest in the superoxide anion radical as one of reactive oxygen species (ROS) not only in the basic research field of chemistry and physics but also in the life science (or biotechnology). Recently, it is becoming ever more vital since the toxic property of nanomaterials as well as advanced oxidation processes (AOP) frequently employed for controlling pollutants are connected with the formation of superoxide anion radicals. Despite many researches on superoxide anion radical, the quantitative information of its presence and its detailed reaction mechanism in aqueous environments remains largely unclear, causing the controversy and confusion. In this review paper, we attempted to summarize the physicochemical property, mechanisms, and applications of superoxide anion radical. In addition, we briefly incorporated the important application of superoxide anion radical in AOP, nanomaterials, and life science (or biotechnology).
- von Sonntag C, Schuchmann HP, Angew. Chem. Int. Ed. Engl., 30, 1229 (1991)
- von Sonntag C, Free-radical-induced DNA damage and its repair: A Chemical Perspective. Springer, Berlin, 2006, 357-481.
- Bielski BHJ, Cabelli DE, Arudi RL, Ross AB, J. Phys. Chem. Ref. Data, 14, 1041 (1985)
- Bielski BHJ, Allen AO, J. Phys. Chem., 81, 1048 (1977)
- Kruk I, Environmental Toxicology and Chemistry of Oxygen Species. The Handbook of Environmental Chemistry, Volume 2 Reactions and Processes (Part I), ed. Hutzinger O, 5, Springer, Berlin (1997)
- Encyclopedia of Science & Technology, 17 SOR-SUP, 10th Edition, 748, McGraw-Hill, New York (2007)
- McCord JM, Fridovich I, J. Biol. Chem., 244, 6049 (1969)
- Fridovich I, J. Biol. Chem., 272, 18515 (1997)
- Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ, Environ. Sci. Technol., 41, 4158 (2007)
- Nel A, Xia T, Madler L, Li N, Science, 311, 622 (2006)
- Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdorster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran I, Water NJ, Warheit DB, Nature, 444, 267 (2006)
- Fenton HJH, J. Chem. Soc. Proc., 10, 157 (1894)
- Lim H, Namkung KC, Yoon J, J. Korean Ind. Eng. Chem., 16(1), 9 (2005)
- Haber F, Weiss JJ, Proc. R. Soc. London, Ser. A., 147, 332 (1934)
- Wikipedia homepage, http://en.wikipedia.org/wiki/Electron_spin_resonance (2009)
- 김영곤, 김영균, 프리라디칼: 유해 활성산소를 중심으로, 240, 도서출판 여민각, 서울 (1997)
- Fridovich I, Acc. Chem. Res., 5, 321 (1972)
- Lias SG, Liebman JF, Levin RD, J. Phys. Chem. Ref. Data, 13, 1 (1984)
- Sanders R, Compilation of Henry’s law constants for inorganic and organic species of potential importance in environmental chemistry, http://www.mpch-mainz.mpg.de/~sander/res/henry.html.version 3 (1999)
- Bull C, McClune GJ, Fee JA, J. Am. Chem. Soc., 105, 5290 (1983)
- Bull C, Fee JA, J. Am. Chem. Soc., 107, 3295 (1985)
- Bull C, Niederhoffer EC, Yoshida T, Fee JA, J. Am. Chem. Soc., 113, 4069 (1991)
- Kwon BG, Lee JH, Anal. Chem., 76, 6359 (2004)
- Kwon BG, Kim E, Lee JH, Chemosphere, 74, 1335 (2009)
- Kwon BG, Lee JH, Bull. Korean Chem. Soc., 27, 1785 (2006)
- Staehelin J, Hoigne J, Environ. Sci. Technol., 16, 676 (1982)
- Behler RE, Staehelin J, Hoigne J, J. Phys. Chem., 88, 2560 (1984)
- von Gunten U, Water Res., 37, 1443 (2003)
- Hoigne J, Bader H, Haag WR, Staehelin J, Water Res., 19, 993 (1985)
- Staehelin J, Hoigne J, Environ. Sci. Technol., 19, 1206 (1985)
- Flyunt R, Leitzke A, Mark G, Mvula E, Reisz E, Schick R, von Sonntag C, J. Phys. Chem. B, 107(30), 7242 (2003)
- Glaze WH, Lay Y, Kang JW, Ind. Eng. Chem. Res., 34(7), 2314 (1995)
- Sehested K, Corfitzen H, Holcman J, Fischer CH, Hart EJ, Environ. Sci. Technol., 25, 1589 (1991)
- Acero JL, Stemmler K, von Gunten U, Environ. Sci. Technol., 34, 591 (2000)
- Forni L, Bahnemann D, Hart EJ, J. Phys. Chem., 86, 255 (1982)
- Sehested K, Holcman J, Hart EJ, J. Phys. Chem., 87, 1951 (1983)
- Hoffman MR, Martin ST, Choi W, Bahnemann DW, Chem. Rev., 96, 69 (1995)
- Fujishima A, Rao TN, Tryk DA, J. Photochem. Photobiol. C: Reviews., 1, 1 (2000)
- Nosaka Y, Yamashita Y, Fukuyama H, J. Phys. Chem. B, 101(30), 5822 (1997)
- Hirakawa T, Nosaka Y, Langmuir, 18(8), 3247 (2002)
- Hirkawa T, Daimon T, Kitazawa M, Ohguri N, Koga C, Negishi N, Matsuzawa S, Nosaka Y, J. Photochem. Photobiol. A: Chemistry, 190, 58 (2007)
- Gerischer H, Heller A, J. Phys. Chem., 95, 5261 (1991)
- Nakamura R, Nakato Y, J. Am. Chem. Soc., 126(4), 1290 (2004)
- Ishibashi K, Nosaka Y, Hashimoto K, Fujishima A, J. Phys. Chem. B, 102(12), 2117 (1998)
- Ishibashi K, Fujishima A, Watanabe T, Hashimoto K, J. Phys. Chem. B, 104(20), 4934 (2000)
- Hirakawa T, Kominami H, Ohtani B, Nosaka Y, J. Phys. Chem. B, 105(29), 6993 (2001)
- Hirakawa T, Nakaoka Y, Nishino J, Nosaka Y, J. Phys. Chem. B, 103(21), 4399 (1999)
- Hirakawa T, Yawata K, Nosaka Y, Appl. Catal. A: Gen., 325(1), 105 (2007)
- Kwon BG, J. Photochem. Photobiol., A, 199, 12 (2008)
- Cater SR, Stefan MI, Bolton JR, Safarzadeh-Amiri A, Environ. Sci. Technol., 34, 659 (2000)
- Stefan MI, Bolton JR, Environ. Sci. Technol., 32, 1588 (1998)
- Legrini O, Oliveros E, Braun AM, Chem. Rev., 93, 671 (1993)
- Hislop KA, Bolton JR, Environ. Sci. Technol., 33, 3119 (1999)
- Rosenfeldt EJ, Linden KG, Environ. Sci. Technol., 41, 2548 (2007)
- Sarathy SR, Mohseni M, Environ. Sci. Technol., 41, 8315 (2007)
- Jeong J, Yoon J, Water Res., 39, 2893 (2005)
- Getoff N, Radiat. Phys. Chem., 47, 581 (1996)
- Pikaev AK, High Energ. Chem., 34, 1 (2000)
- Pikaev AK, High Energ. Chem., 34, 55 (2000)
- Nickelsen MG, Cooper WJ, Kurucz CN, Waite TD, Environ. Sci. Technol., 26, 144 (1992)
- Nickelsen MG, Cooper WJ, Lin K, Kurucz CN, Water Res., 28, 1227 (1994)
- Kurucz CN, Waite TD, Cooper WJ, Radiat. Phys. Chem., 45, 299 (1995)
- Bettoli MG, Ravanelli M, Tositti L, Tubertini O, Guzzi L, Martinotti W, Gueirazza G, Tamba M, Radiat. Phys. Chem., 52, 327 (1998)
- Schmelling DC, Poster DL, Chaychian M, Neta P, Silverman J, Al-Sheikhly M, Environ. Sci. Technol., 32, 270 (1998)
- Zona R, Schimid S, Solar S, Water Res., 33, 1314 (1999)
- Weihua S, Zheng Z, Rami AS, Tao Z, Desheng H, Radiat. Phys. Chem., 65, 559 (2002)
- Lin K, Cooper WJ, Nickelsen MG, Kurucz CN, Waite TD, Appl. Radiat. Isotopes, 46, 1307 (1995)
- Mak FT, Zele SR, Cooper WJ, Kurucz CN, Waite TD, Nickelsen MG, Water Res., 31, 219 (1997)
- Gehringer P, Eschweiler H, Fiedler H, Radiat. Phys. Chem., 46, 1075 (1995)
- Gehringer P, Eschweiler H, Szinovatz W, Fiedler H, Steiner R, Sonneck G, Radiat. Phys. Chem., 42, 711 (1993)
- Gehringer P, Fiedler H, Radiat. Phys. Chem., 52, 345 (1998)
- Buxton GV, Greenstock CL, Helman WP, Ross AB, J. Phys. Chem. Ref. Data, 17, 513 (1988)
- Woods RJ, Radiation Chemistry and its Application to Environmental Pollution, eds. Cooper WJ, Curry RD, O’Shea KE, Environmental Applications of Ionizing Radiation, 1, John Wiley & Sons, INC., New York (1998)
- Fang X, He Y, Liu J, Wu J, Radiat. Phys. Chem., 53, 411 (1998)
- Donaldson K, Nanotoxicity 2007, Sofitel Bercy Paris, Paris, France (2007)
- Merenyi G, Lind J, Eriksen TE, J. Phys. Chem., 88, 2320 (1984)
- Merenyi G, Lind J, Shen X, Eriksen TE, J. Phys. Chem., 94, 748 (1990)
- Cho M, Chung H, Choi W, Yoon J, Appl. Environ. Microbio., 71, 270 (2005)
- Zheng J, Springston SR, Weinstein-Lioyd J, Anal. Chem., 75, 4696 (2003)
- Schwartz SE, J. Geophys. Res., 89, 11589 (1984)