화학공학소재연구정보센터
Macromolecular Research, Vol.17, No.12, 1010-1014, December, 2009
Core-shell Poly(D,L-lactide-co-glycolide)/Poly(ethyl 2-cyanoacrylate) Microparticles with Doxorubicin to Reduce Initial Burst Release
E-mail:
Monodispersed microparticles with a poly(D,L-lactide-co-glycolide) (PLGA) core and a poly(ethyl 2-cyanoacrylate) (PE2CA) shell were prepared by Shirasu porous glass (SPG) membrane emulsification to reduce the initial burst release of doxorubicin (DOX). Solution mixtures with different weight ratios of PLGA polymer and E2CA monomer were permeated under pressure through an SPG membrane with 1.9 μm pore size into a continuous water phase with sodium lauryl sulfate as a surfactant. Core-shell structured microparticles were formed by the mechanism of anionic interfacial polymerization of E2CA and precipitation of both polymers. The average diameter of the resulting microparticles with various PLGA:E2CA ratios ranged from 1.42 to 2.73 μm. The morphology and core-shell structure of the microparticles were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The DOX release profiles revealed that the microparticles with an equivalent PLGA:E2CA weight ratio of 1:1 exhibited the optimal condition to reduce the initial burst of DOX. The initial release rate of DOX was dependent on the PLGA:E2CA ratio, and was minimized at a 1:1 ratio.
  1. Bodmeier R, McGinity JW, Pharm. Res., 4, 465 (1987)
  2. Juni K, Ogata J, Nakano M, Ichihara T, Mori K, Akagi M, Chem. Pharm. Bull., 33, 313 (1985)
  3. Ruiz JM, Tissier B, Benoit JP, Int. J. Pharm., 49, 69 (1989)
  4. Bodmeier R, Chen H, J. Pharm. Pharmacol., 40, 754 (1988)
  5. Wise DL, McCormick GJ, Willet GP, Anderson LC, Life Sci., 19, 867 (1976)
  6. Athanasiou KA, Niederauer GG, Agrawal CM, Biomaterials, 17, 93 (1996)
  7. Jalil R, Nixon JR, J. Microencap., 7, 297 (1990)
  8. Okada H, Miyamoto M, Heya T, Inoue Y, Kamei S, Ogawa Y, Taguchi H, J. Control. Release, 28, 121 (1994)
  9. Omelczuk MO, McGinity JW, Pharm. Res., 9, 26 (1992)
  10. Shah SS, Cha Y, Pitt CG, J. Control. Release, 38, 261 (1992)
  11. Pekarek KJ, Jacob JS, Mathiowitz E, Mater. Res. Soc. Symp. Proc., 331, 97 (1994)
  12. Kishida A, Murakami K, Goto H, Akashi M, Kubita H, Endo T, J. Bioact. Compat. Polym., 13, 270 (1998)
  13. Shiga K, Muramatsu N, Kondo T, J. Pharm. Pharmacol., 48, 891 (2002)
  14. Chu LY, Park SH, Yamaguchi T, Nakao S, Langmuir, 18(5), 1856 (2002)
  15. Huang CY, Lee YD, Int. J. Pharm., 325, 132 (2006)
  16. Gibaud S, Rousseau C, Weingarten C, Favier R, Douay L, Andreux J, Couvreur P, J. Control. Release, 52, 131 (1998)
  17. Vezin WR, Florence AT, J. Biomed. Mater. Res., 14, 93 (1980)
  18. Leonard F, Kulkarni RK, Brandes G, Nelson J, Cameron JJ, J. Appl. Polym. Sci., 10, 259 (1966)
  19. Muller RH, Lherm C, Herbort J, Blunk T, Couvreur P, Int. J. Pharm., 84, 1 (1992)
  20. Lenaerts V, Couvreur P, Christiaens-Leyh D, Joiris E, Roland M, Rollman B, Speiser P, Biomaterials, 5, 65 (1984)
  21. Scherer D, Robinson JR, Kreuter J, Int. J. Pharm., 101, 165 (1994)
  22. O’Sullivan C, Birkinshaw C, Polym. Degrad. Stabil., 78, 7 (2002)
  23. Page-Clisson ME, Pinto-Alphandary H, Ourevitch M, Andremont A, Couvreur P, J. Control. Release, 56, 23 (1998)
  24. O’Sullivan C, Birkinshaw C, Biomaterials, 25, 4375 (2004)
  25. Chu LY, Xie R, Zhu JH, Chen WM, Yamaguchi T, Nakao S, J. Colloid Interface Sci., 265(1), 187 (2003)
  26. Behan N, Birkinshaw C, Clarke N, Biomaterials, 22, 1335 (2001)
  27. Omi S, Senba T, Nagai M, Ma GH, J. Appl. Polym. Sci., 79(12), 2200 (2001)
  28. Choi SW, Kwon HY, Kim WS, Kim JH, Colloid Surface A, 201, 283 (2002)
  29. Brandrup J, Immergut EH, Grulke EA, Polymer Handbook, 4th edition, Vol. 1, p. 708.
  30. Zolnik BS, Burgess DJ, J. Control. Release, 122, 338 (2007)
  31. Bootz A, Russ T, Gores F, Karas M, Kreuter J, Eur. J. Pharm. Biopharm., 60, 391 (2005)