화학공학소재연구정보센터
Chemical Engineering Communications, Vol.196, No.1-2, 234-251, 2009
Ordering Transitions in Liquid Crystals Permit Imaging of Spatial and Temporal Patterns Formed by Proteins Penetrating into Lipid-Laden Interfaces
Recent studies have reported that full monolayers of L-alpha-dilaurylphosphatidylcholine (L-DLPC) and D-alpha-dipalmitoylphosphatidylcholine (D-DPPC) formed at interfaces between thermotropic liquid crystals (LCs) and aqueous phases lead to homeotropic (perpendicular) orientations of nematic LCs and that specific binding of proteins to these interfaces (such as phospholipase A(2) binding to D-DPPC) can trigger orientational ordering transitions in the liquid crystals. We report on the nonspecific interactions of proteins with aqueous-LC interfaces decorated with partial monolayer coverage of L-DLPC. Whereas nonspecific interactions of four proteins (cytochrome c, bovine serum albumin, immunoglobulins, and neutravidin) do not perturb the ordering of the LC when a full monolayer of L-DLPC is assembled at the aqueous-LC interface, we observe patterned orientational transitions in the LC that reflect penetration of proteins into the interface of the LC with partial monolayer coverage of L-DLPC. The spatial patterns formed by the proteins and lipids at the interface are surprisingly complex, and in some cases the protein domains are found to compartmentalize lipid within the interfaces. These results suggest that phospholipid-decorated interfaces between thermotropic liquid crystals and aqueous phases offer the basis of a simple and versatile tool to study the spatial organization and dynamics of protein networks formed at mobile, lipid-decorated interfaces.