Biotechnology Letters, Vol.30, No.11, 1937-1942, 2008
Polyglycolic acid filaments guide Schwann cell migration in vitro and in vivo
Nerve conduits filled with longitudinal aligned filaments have demonstrated a better regenerative outcome for bridging large peripheral nerve gaps than hollow nerve conduits. In the present study, we investigated the in vitro and in vitro cellular behavior of Schwann cells on polyglycolic acid (PGA) filaments by immunocyto/histochemistry and light/electron microscopy. After 1-3-week culture of rat dorsal root ganglia (DRGs) onto PGA filaments, Schwann cells from rat DRGs adhered to and migrated along PGA filaments. Twenty-four rats received implantation of chitosan conduits inserted with PGA filaments to bridge 10-mm-long sciatic nerve gaps. At 1, 2, 3 and 4 weeks post-implantation (n = 6, each time point), Schwann cells were found to migrate along PGA filaments and form cell columns resembling bands of Bungner. These results suggest that PGA filaments may play a contact guidance role in Schwann cell migration and thus serve as a promising conduit-filling material to facilitate peripheral nerve repair.