화학공학소재연구정보센터
Biotechnology and Bioengineering, Vol.101, No.5, 975-984, 2008
Construction of a Fluorescein-Responsive Chimeric Receptor With Strict Ligand Dependency
Since many cell functions are regulated by members of the cytokine receptor superfamily, the artificial mimicry of the cytokine receptor system would be attractive for cellular engineering. We previously showed that an antibody/cytokine receptor chimera can transduce a growth signal in response to non-natural ligands, such as fluorescein-conjugated BSA. However, considerable background of cell proliferation was observed without antigen. Therefore, we redesigned chimeric receptor constructs with different combinations of domains containing anti-fluorescein single chain Fv (ScFv), extracellular D1/D2 as well as transmembrane domains of erythropoietin receptor (EpoR), and the intracellular domain of glycoprotein 130 (gp130), to obtain strictly fluorescein-dependent chimeric receptors. When interleukin-3-dependent Ba/F3 cells were transduced with retroviral vectors encoding individual chimeric receptors, the chimeras either with both D I and D2 domains or without any EpoR extracellular domain attained a strict ligand-dependent ON/OFF regulation.