- Previous Article
- Next Article
- Table of Contents
Fuel Processing Technology, Vol.47, No.1, 1-69, 1996
Diesel particulate emission control
This paper reviews the emission control of particulates from diesel exhaust gases. The efficiency and exhaust emissions of diesel engines will be compared with those of otto engines (petrol engines). The formation of particulates (or ''soot''), one of the main nuisances of diesel exhaust gases, will be briefly outlined. The effects of various emission components on human health and the environment will be described, and subsequently the emission standards for particulates and for NOx, which have been introduced worldwide, will be summarized. Possible measures for reducing exhaust emissions of particulates and NOx will be discussed, such as the use of alternative fuels, modifications to the engine and the use of aftertreatment devices. It will be made clear that aftertreatment devices may become necessary as diesel emission standards become more stringent, in spite of important progress in the other fields of reducing exhaust emissions. Selective catalytic reduction via hydrocarbons, ammonia or urea, a possible aftertreatment method for NOx emission control, will be discussed briefly. Filters for collecting particulates from diesel exhaust gases will be examined in more detail and aftertreatment control systems for particulate removal will be reviewed. These can be divided into (i) non-catalytic filter based systems which use burners and electric heaters to burn the soot once it has been collected on the filter, (ii) catalytic filter-based systems which consist of filters with a catalyst coating, or filters used in combination with catalytically active precursor compounds added to the diesel fuel; and (iii) catalytic non-filter-based systems in which gaseous hydrocarbons, carbon monoxide and part of the hydrocarbon fraction of the particulates are oxidized in the exhaust gases. Finally, recent trends in diesel particulate emission control will be discussed, indicating the growing importance of the catalytic solutions: the fast introduction of non-filter-based catalysts for diesel engines and the possible application of filters in combination with catalytically active precursor compounds added to diesel fuel.
Keywords:CATALYTIC COMBUSTION;TOXICOLOGICAL PERSPECTIVE;SUPPORTEDCATALYSTS;EXHAUST EMISSIONS;FUEL AROMATICITY;CU-ZSM-5ZEOLITE;SOOT FORMATION;OXIDATION;CARBON;REDUCTION