Polymer(Korea), Vol.33, No.6, 615-619, November, 2009
실세스키옥세인을 포함한 팔라듐 나노입자와 폴리아크릴산과의 이온결합에 의한 나노복합체 제조 및 특성평가
Synthesis and Characterization of Hybrid Nanocomposites of Pd Nanoparticles Containing POSS(Pd-POSS) and Poly(acrylic acid) via Ionic Interactions
E-mail:
초록
Pd-POSS 나노입자는 palladium(II) acetate와 octa(3-aminopropyl) octasilsesquioxane octahydrochloride(POSS-NH3+)를 메탄올 용매 하에 상온에서 제조하였다. POSS-NH3+를 이용한 Pd-POSS 나노입자의 크기는 약 60-80 nm의 직경인 구형으로 관찰되었다. 반면에, POSS-NH3+를 이용하지 않은 Pd 나노입자의 경우에는 4 nm 정도의 크기를 가진 것으로 확인되었다. Pd-POSS 나노입자와 poly(acrylic acid)(PAA)를 이용한 Pd-POSS/PAA 나노복합체는 양전하를 띠는 Pd-POSS 나노입자와 음전하를 띠는 PAA의 카르복실레이트 그룹의 정전기적 인력을 이용하여 제조하였다. Pd-POSS 나노입자는 유기고분자인 PAA에 의하여 일렬로 나열되어 있는 라인형태의 구조로 연결되었다.
즉, PAA를 cross-linker로 이용하여 Pd-POSS의 구조를 제어한 나노복합체를 합성하였다. Pd-POSS/PAA 나노복합체의 구조 및 형태와 열적 안정성은 FE-SEM, AFM, TEM, FT-IR과 TGA를 통하여 분석하였다.
Pd-POSS nanoparticles were produced from the reaction of palladium(II) acetate and octa
(3-aminopropyl)octasilsesquioxane octahydrochloride (POSS-NH3+) in methanol at room temperature. Pd-POSS nanoparticles with a mean diameter of 60-80 nm were the highly ordered spherical aggregates. In contrast, Pd nanoparticles with a size of 4.0 nm were obtained when POSS-NH3+ was not introduced. Pd-POSS/PAA nanocomposites of Pd-POSS nanoparticles and poly(acrylic acid) (PAA) were fabricated by utilizing ionic interactions between positively charged Pd-POSS nanoparticles and negatively charged carboxylate groups of PAA. PAA was used as a cross-linker for the preparation of hybrid nanocomposites with the controlled organized structures of Pd-POSS nanoparticles. That is, the self-organization of Pd-POSS nanoparticles was formed into the shape of continuous lines by using PAA as a cross-linker. The composition, structure, surface morphology, and thermal stability of the Pd-POSS/PAA nanocomposites were studied by FE-SEM, AFM, TEM, FT-IR, and TGA.
Keywords:polyhedral oligomeric silsesquioxane(POSS);poly(acrylic acid);hybrid nanocomposites;Pd nanoparticles
- Adachi K, Achimuthu AK, Chujo Y, Macromolecules, 37(26), 9793 (2004)
- Ogoshi T, Chujo Y, Macromolecules, 36(3), 654 (2003)
- Ogoshi T, Chujo Y, Macromolecules, 37(16), 5916 (2004)
- Norisuye T, Shibayama M, Tamaki R, Chujo Y, Macromolecules, 32(5), 1528 (1999)
- Cheng HQ, Tamaki R, Laine RM, Babonneau F, Chujo Y, Treadwell DR, J. Am. Chem. Soc., 122(41), 10063 (2000)
- Imai Y, Chujo Y, Macromolecules, 33(8), 3059 (2000)
- Brinker CJ, Keefer KD, Schaefer DW, Assink RA, Kay BD, Ashley CS, J. Non-Cryst. Solids, 63, 45 (984)
- NOVAK BM, Adv. Mater., 5(6), 422 (1993)
- Haddad TS, Lichtenhan JD, Macromolecules, 29(22), 7302 (1996)
- Baney RH, Itoh M, Sakakibara A, Suzuki T, Chem. Rev., 95(5), 1409 (1995)
- Agaskar PA, Inorg. Chem., 30, 2707 (1991)
- Adachi E, Langmuir, 16(16), 6460 (2000)
- BRUST M, BETHELL D, SCHIFFRIN DJ, KIELY CJ, Adv. Mater., 7(9), 795 (1995)
- Feher FJ, Wyndham KD, Chem. Commun., 323 (1998)
- Naka K, Itoh H, Chujo Y, Nano Lett., 2, 1183 (2002)