Biochemical and Biophysical Research Communications, Vol.383, No.4, 469-474, 2009
Involvement of ERK1/2 signaling pathway in DJ-1-induced neuroprotection against oxidative stress
Parkinson's disease (PD) is a progressive neurodegenerative disorder. Although the precise mechanism remains unclear, mounting evidence suggests that oxidative stress plays an important role in the pathogenesis of PD. DJ-1 gene is associated with oxidative stress and mutations in DJ-1 are involved in an autosomal recessive, early onset familial form of PD. The ERK1/2 signaling pathway contributes to neuroprotection during oxidative stress. However, the correlation between DJ-1 and the ERK1/2 signaling pathway remains unknown. To test for an association of DJ-1 with the ERK1/2 signaling pathway, we transfected wild-type and L166P Mutated DJ-1 into COS-7 and MN9D cells. The results showed that over-expression of WT-DJ-1 dramatically enhanced the phosphorylation of ERK1/2 and its upstream kinase MEK1/2. Meanwhile, W7-DJ-1, but not L166P-DJ-1 inhibited the expression of protein phosphatase 2A (PP2A), an inhibitor of the ERK1/2 signaling pathway. Moreover, over-expression of WT-DJ-1 increased cell viability and decreased cell sensitivity to H2O2-induced neurotoxicity. Inhibition of the ERK1/2 signaling pathway with a MEK1/2 inhibitor reversed these changes. We conclude that DJ-1 does affect the ERK1/2 signaling pathway and change the Susceptibility of cells to oxidative stress. (C) 2009 Elsevier Inc. All rights reserved.