화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.379, No.4, 812-816, 2009
SNAP-25(1-180) enhances insulin secretion by blocking Kv2.1 channels in rat pancreatic islet beta-cells
Voltage-gated outward K+ currents from pancreatic islet beta-cells are known to repolarize the action potential during a glucose stimulus, and consequently to modulate Ca2+ entry and insulin secretion. The voltage gated K+ (Kv) channel, Kv2.1, which is expressed in rat islet beta-cells, mediates over 60% of the Kv outward K+ currents. A novel peptidyl inhibitor of Kv2.1/Kv2.2 channels, guangxitoxin (GxTX)-1, has been shown to enhance glucose-stimulated insulin secretion. Here, we show that SNAP-25(1-180) (S180), an N-terminal SNAP-25 domain, but not SNAP-25(1-206) (S206), inhibits Kv current and enhances glucose-dependent insulin secretion from rat pancreatic islet beta-cells, and furthermore, this enhancement was induced by the blockade of the Kv2.1 current. This study indicates that the Kv2.1 channel is a potential target for novel therapeutic agent design for the treatment of type 2 diabetes. This target may possess advantages over currently-used therapies, which modulate insulin secretion in a glucose-independent manner. (C) 2008 Published by Elsevier Inc.