화학공학소재연구정보센터
Applied Surface Science, Vol.256, No.3, 603-607, 2009
Microstructure and discharge properties of Mg-Zr-O protective films in plasma display panel
Mg-Zr-O protective films for plasma display panels (PDPs) were deposited on soda-lime glass substrates by magnetron sputtering method. The effects of Zr doping on both the discharge properties (firing voltage, V-f and the minimum sustaining voltage, V-s) and the microstructure of the Mg-Zr-O films were investigated. The results show that the deposited Mg-Zr-O films retain the NaCl-type structure as the pure MgO crystal. The doped Zr exists in the form of Zr4+ substitution solution in MgO crystal and an appropriate amount of Zr can improve the surface characteristics of the Mg-Zr-O films effectively. When the Zr atomic concentration is about 2%, the Mg-Zr-O films have the strongest (200) preferred orientation and the minimum surface roughness. The. ring voltage and the minimum sustaining voltage of Mg-Zr-O protective layer are reduced at most by about 25 V and 15 V, respectively, compared with those of the pure MgO film. Mg-Zr-O protective layers with an appropriate amount of Zr are promising to meet the demands of advanced high-vision PDPs. (c) 2009 Elsevier B.V. All rights reserved.