화학공학소재연구정보센터
Applied Surface Science, Vol.255, No.24, 9808-9812, 2009
Direct conversion of a metal organic compound to epitaxial Sb-doped SnO2 film on a (001) TiO2 substrate using a KrF laser, and its resulting electrical properties
Epitaxial Sb-doped SnO2 (0 0 1) thin film on a TiO2 (0 0 1) substrate was successfully prepared by laser-assisted metal organic deposition at room temperature. The effects of the precursor thin film and laser fluence on the resistivity, carrier concentration, and mobility of the Sb-doped SnO2 film were investigated. The resistivity of the Sb-doped SnO2 film prepared by direct irradiation to metal organic film is one order of magnitude lower than that of film prepared by irradiation to amorphous Sb-doped SnO2 film. From an analysis of Hall measurements, the difference between the resistivity of the Sb-doped SnO2 film prepared using the metal organic precursor film and that of amorphous precursor film appears to be caused by the mobility. Direct conversion of the metal organic compound by excimer laser irradiation was found to be effective for preparing epitaxial Sb-doped SnO2 film with low resistivity. (C) 2009 Elsevier B. V. All rights reserved.