화학공학소재연구정보센터
Applied Surface Science, Vol.255, No.18, 8158-8163, 2009
Growth of nanocrystalline CuIn3Se5 (OVC) thin films by ion exchange reactions at room temperature and their characterization as photo-absorbing layers
Nanocrystalline CuIn3Se5 thin films have been grown on ITO glass substrates using chemical ion exchange reactions with CdS, in alkaline medium at pH 11. The as-deposited films were annealed in air at 200 degrees C for 30 min and characterized using X-ray diffraction (XRD), transmission electron microscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and scanning electron microscopy to study the structural, compositional and morphological properties. The XRD patterns reveal the nanoparticles size to be of 18-20 nm diameter, while from the SEM images the nanoparticles size is estimated to be 20-30 nm. It is observed that the annealed films contain nanocrystallites connected with each other through grain boundaries, with grain size of about 100-125 nm and have an overall n-type electrical conductivity and higher photoconductivity. The current-voltage (I-V) characteristics (in dark and light) of these films indicated the formation of a Schottky like junction between the n-CuIn3Se5 (OVC) and CdS/ITO layers. (C) 2009 Elsevier B.V. All rights reserved.