Applied Surface Science, Vol.254, No.23, 7693-7696, 2008
Mixed layer formation of copper overlayers on Ni(110) surface
Copper overlayer formation on the Ni(1 1 0) surface was studied by scanning tunneling microscopy (STM) in an ultrahigh vacuum. Atom-resolved STM images showed that initially deposited Cu is replaced with surface Ni atoms forming atom-size depressions on the Ni(1 1 0) terraces and a Ni-rich quasi-one-dimensional island along the [1 (1) over bar 0] direction. Further Cu deposition yields a mosaic structure on the islands, indicating Cu/Ni mixed layer formation. From the quantitative measurement of the Cu/Ni ratio on the substrate and the islands, impinging Cu will be replaced with surface Ni whereas expelled Ni and directly impinging Cu to the island form the mixed island. The number of Cu atoms in the islands, however, more than the directly impinging Cu, indicate significant Cu/Ni replacement at the periphery of the island. (C) 2008 Elsevier B.V. All rights reserved.