Applied Surface Science, Vol.254, No.23, 7655-7658, 2008
Aluminium adsorption on Ir(111) at a quarter monolayer coverage: A first-principles study
We present an ab initio density-functional study for aluminium adsorption on Ir(1 1 1) at high symmetry sites, namely, the fcc-, hcp-hollow, top and bridge sites. In each case, we calculate the atomic geometry, average binding energy, work function, and surface dipole moment at the coverage of 0.25 monolayer. We find the favourable structure to be Al at threefold hcp-hollow site, with a corresponding binding energy of 4.46 eV. We present and compare the electronic properties of the two lowest energy structures, i.e., at the threefold hollow sites and discuss the nature of the Al Ir bond and binding site preference. In particular, we observe a large hybridization of Al-3s, 3p and Ir-5d states near Fermi level, forming an intermetallic bonds. This results in a significant electron transfer from the Al atoms to the Ir(1 1 1) substrate, inducing an outward pointing surface dipole moment and a large decrease in the work function of 1.69 eV for Al in the hcp-hollow site. Compared to the fcc- hollow site, adsorption in the hcp-hollow site results in a lower density-of-states at the Fermi level, as well as a greater hybridization in the bonding states. (C) 2008 Elsevier B. V. All rights reserved.