Applied Surface Science, Vol.254, No.21, 7035-7041, 2008
Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions
Carbon nanotubes (CNTs) were fabricated by the catalytic chemical vapor deposition method and oxidized by HCl, H2SO4, HNO3 and NaOCl solutions for enhancing benzene, toluene, ethylbenzene and p-xylene (BTEX) adsorption in an aqueous solution. The surface nature of CNTs was changed after the H2SO4, HNO3 and NaOCl oxidation, which makes CNTs that adsorbmore BTEX. The NaOCl-oxidized CNTs show the greatest enhancement in BTEX adsorption, followed by the HNO3-oxidized CNTs, and then the H2SO4-oxidized CNTs. The adsorption mechanism of BTEX via CNTs is mainly attributed to the pi-pi electron-donor-acceptor interaction between the aromatic ring of BTEX and the surface carboxylic groups of CNTs. The NaOCl-oxidized CNTs have superior adsorption performance of BTEX as compared to many types of carbon and silica adsorbents reported in the literature. This suggests that the NaOCl-oxidized CNTs are efficient BTEX adsorbents and that they possess good potential applications for BTEX removal in wastewater treatment. (C) 2008 Elsevier B. V. All rights reserved.
Keywords:carbon nanotubes;surface oxidation;adsorption;benzene;ethylbenzene;toluene;p-xylene;wastewater treatment