화학공학소재연구정보센터
Applied Surface Science, Vol.254, No.15, 4780-4785, 2008
Visible-light-induced degradation of formaldehyde over titania photocatalyst co-doped with nitrogen and nickel
Titanium isopropoxide, ammonium carbonate and nickelous nitrate were used as the sources of titanium, nitrogen, and nickel to prepare titania photocatalyst co-doped with nitrogen and nickel by means of the modified sol-gel method. The photocatalyst was characterized by X-ray diffraction (XRD), UV-vis diffusive reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM). The prepared N-Ni co-doped photocatalyst showed optical absorption in the visible light area and exhibited excellent photocatalytic ability for the degradation of formaldehyde under visible light irradiation. The effects of annealing temperature and component on the phase composition and photocatalytic activity were investigated. The results demonstrated that nitrogen atoms was weaved into the structure of titania and led to the response to visible light. However, nickel atoms existed in the form of Ni2O3, dispersed on the surface of TiO2, suppressed the recombination of photo-induced electron-hole pairs, raised the photo quantum efficiency, and led to the enhancement of photocatalytic performance. The increase of photoactivity was attributed to the synergistic effects of co-doping. (C) 2008 Elsevier B.V. All rights reserved.