화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.15, No.5, 752-757, September, 2009
Enhanced performance of organic electroluminescence diodes with a 2-TNATA:C60 hole injection layer
E-mail:
C60-doped 2-TNATA (4,4',4"-tris(2-naphthylphenylamino)triphenylamine) as a hole injection material and NPD (4,40bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl) as a hole transport material are used to fabricate OLEDs via vacuum deposition process in this study. C60-doped 2-TNATA film was treated by means of thermal annealing and in situ electromagnetic field. According to AFM, SEM, XRD, and Raman spectra results, by both thermal annealing and in situ electromagnetic field treatments, the smoothened surface and the closely packed morphology of 2-TNATA:C60 film was obtained without any evidences of crystalline nature after those treatments. The treatments eventually lead to enhancing the current density and efficiency of the multi-layered ITO/2-TNATA:C60 (5% doped) (70 nm)/NPD (30 nm)/Alq3 (50 nm)/LiF (1 nm)/Al (100 nm) devices by facilitating hole injection/transport in the multi-layered organic devices. Consequently, thermal annealing treatment for the 2-TNATA:C60 film is preferred rather than in situ electromagnetic field treatment so as to improve the overall performance of the organic light-emitting diodes in this study.
  1. Brabec CJ, Sariciftci NS, Hummelen JC, Adv. Funct. Mater., 11(1), 15 (2001)
  2. Peumans P, Yakimov A, Forrest SR, J. Appl. Phys., 93, 3693 (2003)
  3. Kim K, Liu J, Namboothiry MAG, Carroll DL, Appl. Phys. Lett., 90, 163511 (2007)
  4. Kim JY, Lee K, Coates NE, Moses D, Nguyen TQ, Dante M, Heeger AJ, Science, 317, 222 (2007)
  5. Bao Z, Lovinger AJ, Dodabalapur J, Appl. Phys. Lett., 69, 3066 (1996)
  6. Bialek B, Kim IG, Lee JI, Thin Solid Films, 436(1), 107 (2003)
  7. Collins GE, Williams VS, Chau LK, Nebesny KW, England C, Lee PA, Lowe T, Fernando G, Armstrong NR, Synth. Met., 54, 351 (1993)
  8. El-Nahass MM, El-Gohary Z, Soliman HS, Opt. Laser Technol., 35, 523 (2003)
  9. Khrishnakumar KP, Menon CS, Mater. Lett., 48, 64 (2001)
  10. Yanagiya S, Nishikata S, Sazaki G, Hoshino A, Nakajima K, Inoue T, J. Cryst. Growth, 254(1-2), 244 (2003)
  11. Burn PL, Bradley DDC, Friend RH, Halliday DA, Holmes AB, Jackson RW, Kraft A, J. Chem. Soc., 1, 3225 (1992)
  12. Askari SH, Rughooputh SD, Wudl F, Synth. Met., 29, E129 (1989)
  13. Giebeler C, Antoniadis H, Bradley DDC, Shirotaf Y, J. Appl. Phys., 85, 608 (1999)
  14. Chen BJ, Sun XW, Wong TKS, Hu X, Uddin A, Appl. Phys. Lett., 84, 063505 (2005)
  15. Sugiyama T, Furukawa Y, Fujimura H, Chem. Phys. Lett., 405(4-6), 330 (2005)
  16. Maennig B, Drechsel J, Gebeyehu D, Simon P, Kozlowski F, Werner A, Li F, Grundmann S, Sonntag S, Koch M, Leo K, Pfeiffer M, Hoppe H, Meissner D, Sariciftci NS, Riedel I, Dyakonov V, J. Parisi, Appl. Phys. A, 79, 1 (2004)
  17. Maennig B, Pfeiffer M, Nollau A, Zhou X, Leo K, Simon P, Phys. Rev. B, 64, 195208 (2001)
  18. Choe Y, Park SY, Park DW, J. Chem. Eng. Jpn., 38, 62 (2005)
  19. Zhou YF, Yuan YB, Cao LF, Zhang J, Pang HQ, Lian JR, Zhou X, J. Lumin., 122, 602 (2007)
  20. Boamfa MI, Christianen PCM, Maan JC, Engelkamp H, Nolte RJM, Physica B, 294, 343 (2001)
  21. Ji ZG, Wong KW, Tse PK, Kwok RWM, Lau WM, Thin Solid Films, 402(1-2), 79 (2002)
  22. Ganzorig C, Kwak KJ, Yagi K, Fujihira M, Appl. Phys. Lett., 79, 272 (2001)
  23. Park S, Kang DS, Park DW, Choe Y, Polym.(Korea), 32(4), 372 (2008)
  24. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F, Science, 258, 1474 (1992)
  25. Lee JY, Jang HK, J. Appl. Phys., 88, 183502 (2006)
  26. Hawkridge AM, Pemberton JE, J. Am. Chem. Soc., 125(3), 624 (2003)