화학공학소재연구정보센터
Applied Catalysis B: Environmental, Vol.82, No.3-4, 180-189, 2008
Plasma-catalysis destruction of aromatics for environmental clean-up: Effect of temperature and configuration
A non-thermal, atmospheric pressure, packed-bed plasma reactor has been used to study the effect of temperature on the plasma-catalytic destruction of toluene and benzene in air using two catalyst positions. TiO2 and gamma-Al2O3 supports, and Ag (0.5 wt.%) impregnated catalysts of both supports, were used to determine their effects. The reactor (in the one-stage configuration) or the downstream catalyst (in the two-stage arrangement) could be heated to similar to 600 degrees C and the destruction efficiencies for toluene and benzene were determined. Plasma catalysis is more effective at destroying benzene and toluene than both conventional thermal-catalysis and plasma alone. Toluene is destroyed much snore efficiently than benzene, regardless of the temperature of the system and the reactor configuration. A one-stage, plasma-catalysis configuration is found to be more effective at destroying both toluene and benzene than a two-stage configuration. Plasma catalysis offers no advantage over thermal catalysis for destroying both pollutants in the two-stage configuration. (C) 2008 Elsevier B.V. All rights reserved.