화학공학소재연구정보센터
Applied Catalysis A: General, Vol.341, No.1-2, 98-105, 2008
A novel conceptional process for residue catalytic cracking and gasoline reformation dual-reactions mutual control
Based on the subsidiary riser FCC (SRFCC) process for gasoline reformation [Y.H. Bai, J.S. Gao, S.C. Li, C.M. Xu, Petrol. Process. Petrochem. (China)35 (2004)17-21, J.S. Gao, C.M. Xu, Y. Mao, etal., Petrol. Refin. Eng. (China) 35 (2005) 7-9], a novel conceptional process for residue catalytic cracking and gasoline reformation dual-reactions mutual control (DMC) was proposed and relevant experimental researches were carried out in a Technical Pilot Scale Riser (TPSR) FCC apparatus. The goals of DMC were to improve product quality and increase desirable product yield in residue catalytic cracking as well as in FCC gasoline upgrading. The experiments showed that the decrease of temperature difference between feedstock and regenerated catalysts in DMC by directly leading the cooled regenerated catalysts into riser reactor or feeding gasoline into riser reactor in vapor phase could decrease the amount of dry gas and coke and obtain a better quality of upgraded gasoline. Moreover, the spent catalysts still retaining high level of activity could be recycled to the base of the main riser reactor treating heavy oil and mixed with regenerated catalysts in DMC, it allows residue catalytic cracking to operate at high catalyst-to-oil ratio and the relatively low inlet catalysts temperature. The experimental results also showed that the mixed catalysts could improve the product selectivity in residue catalytic cracking, especially for light oil (gasoline and diesel). In addition, compared with the routine RFCC, the product distribution from the residue catalytic cracking in DMC contains more liquid products, less dry gas, and a better gasoline quality. (c) 2008 Elsevier B.V. All rights reserved.