화학공학소재연구정보센터
Macromolecular Research, Vol.17, No.11, 863-869, November, 2009
Effect of Multi-walled Carbon Nanotube Dispersion on the Electrical, Morphological and Rheological Properties of Polycarbonate/Multi-walled Carbon Nanotube Composites
E-mail:
The effect of a multiwalled carbon nanotube (MWCNT) dispersion on the electrical, morphological and rheological properties of polycarbonate (PC)/MWCNT composites was investigated, with and without pretreating the MWCNTs with hydrogen peroxide oxidation and lyophilization. The resulting PC/treated MWCNT composites showed higher electrical conductivity than the PC/untreated MWCNT composites. The morphological behavior indicated the treated composites to have greater dispersion of MWCNTs in the PC matrix. In addition, the electromagnetic interference shielding efficiency (EMI SE) of the treated composites was higher than that of the untreated ones. Rheological studies of the composites showed that the complex viscosity of the treated composites was higher than the untreated ones due to increased dispersion of the MWCNTs in the PC matrix, which is consistent with the electrical conductivity, EMI SE and morphological studies of the treated composites. The latter results suggested that the increased electrical conductivity and EMI SE of the treated composites were mainly due to the increased dispersion of MWCNTs in the PC matrix.
  1. Potschke P, Bhattacharyya AR, Janke A, Polymer, 44(26), 8061 (2003)
  2. Potschke P, Kretzschmar B, Janke A, Compos. Sci. Technol., 67, 855 (2007)
  3. Jin SH, Choi DK, Lee DS, Colloid Surf. A, 313, 242 (2008)
  4. Kim YJ, Shin TS, Choi HD, Kwon JH, Chung YC, Yoon HG, Carbon, 43, 23 (2005)
  5. Du FM, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI, Macromolecules, 37(24), 9048 (2004)
  6. Kum CK, Sung YT, Han MS, Kim WN, Lee HS, Lee SJ, Joo J, Macromol. Res., 14(4), 456 (2006)
  7. Kim BS, Suh KD, Kim B, Macromol. Res., 16(1), 76 (2008)
  8. Eitan A, Fisher FT, Andrews R, Brinson LC, Schadler LS, Compos. Sci. Technol., 66, 1162 (2006)
  9. Huang Y, Li N, Ma Y, Du F, Li F, He X, Carbon, 45, 1614 (2007)
  10. Joo JS, Lee CY, J. Appl. Phys., 88, 513 (2000)
  11. Liu Z, Bai G, Huang T, Ma Y, Du F, Li F, Carbon, 45, 821 (2007)
  12. Kim YJ, An KJ, Suh KS, Choi HD, Kwon JH, Chung YC, IEEE Trans. Electromagn. Compat., 47, 872 (2005)
  13. Yang Y, Gupta MC, Nano Lett., 5, 2131 (2005)
  14. Kim HM, Kim K, Lee CY, Joo J, Cho SJ, Yoon HS, Appl. Phys. Lett., 84, 589 (2004)
  15. Li N, Huang Y, Du F, He X, Lin X, Gao H, Nano Lett., 6, 1141 (2006)
  16. Sung YT, Han MS, Song KH, Jung JW, Lee HS, Kum CK, Joo J, Kim WN, Polymer, 47(12), 4434 (2006)
  17. Garboczi EJ, Snyder KA, Douglas JF, Thorpe MF, Phys. Rev. E, 52, 819 (1995)
  18. Lefrant S, Curr. Appl. Phys., 2(6), 479 (2002)
  19. Colaneri NF, Shacklette LW, IEEE Trans. Instr. Meas., 41, 921 (1992)
  20. Fugetsu B, Sano E, Sunada M, Sambongi Y, Shibuya T, Wang X, Carbon, 46, 1175 (2008)
  21. Yang YL, Gupta MC, Dudley KL, Lawrence RW, Adv. Mater., 17(16), 1999 (2005)
  22. Chung DDL, Carbon, 39, 279 (2001)
  23. Stauffer D, Aharony A, Introduction to Percolation Theory, 2nd ed., Taylor & Francis, London (1992)
  24. Park I, Park M, Kim J, Macromol. Res., 16, 498 (2007)
  25. Ma PC, Tang BZ, Kim JK, Carbon, 46, 1497 (2008)
  26. Kim KH, Jo WH, Macromol. Res., 16(8), 749 (2008)