화학공학소재연구정보센터
Chemical Engineering Science, Vol.64, No.3, 509-519, 2009
Cavern formation in pulp suspensions using side-entering axial-flow impellers
Pulp fibre suspensions display non-Newtonian rheology, including a yield stress. In mixing operations, this creates regions of active motion around the impellers with the cavern size affecting the quality of mixing attained. Due to the opacity of the suspensions, two non-invasive techniques were evaluated for determining cavern dimensions: electrical resistance tomography (ERT) and ultrasonic Doppler velocimetry (UDV), with ERT chosen for most tests due to the speed of data acquisition. Cavern volume as a function of impeller speed is reported for a range of mixing conditions (hardwood and softwood pulp, Suspension mass concentrations from one to five percent, two impeller offsets from the wall, and three suspension height-to-chest diameter ratios). A scaled version of a commercial axial flow impeller was used in a standard side-entering configuration. Measured cavern diameters were compared against model predictions available in the literature. The discrepancy between experimental data and model predictions were significant and were attributed to interaction between the developing cavern and the vessel walls. An alternative model was developed for predicting cavern volume taking this interaction into account. (C) 2008 Elsevier Ltd. All rights reserved.