화학공학소재연구정보센터
Advanced Functional Materials, Vol.18, No.8, 1173-1177, 2008
Fabrication of a memory chip by a complete self-assembly process using state-of-the-art multilevel cell (MLC) technology
Using a two bit molecular switch, an ultra-dense memory chip has been built following a fully automated fabrication process. Well-ordered templates are grown naturally using a well-defined protocol of temperature variation. This template is so designed that molecules are adsorbed selectively only into particular sites whenever they are bombarded on the template through an e-beam evaporator for a particular time. The technique is a generalized protocol that has been used to grow atomic-scale templates by proper tuning of basic global parameters like temperature and evaporation time. Tuning of the basic template parameters is also demonstrated here, and has been used to scale down parameter values following the same route. Tuning the junction profile should allow selective adsorption of more complicated multi-level switches in future. Therefore, a fairly simple technology has been established that addresses one of the most fundamental issues of continuous miniaturization, i.e., simultaneous automated growth of thousands of atomically precise single molecular devices.