화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.47, No.5, 572-579, October, 2009
이송 배관 내 분진폭발의 화염전파특성
Flame Propagation Characteristics Through Suspended Combustible Particles in a Full-Scaled Duct
E-mail:
초록
본 연구에서는 분진폭발에 있어서 기초적 현상을 규명하고 분진의 화염구조와 메커니즘에 대하여 실험적으로 조사하였다. 실험장치는 길이 1.8 m, 단면이 0.15 m의 정방형인 수직연소관을 사용하였으며, 덕트 내를 전파하는 상방 분진층류화염과 화염면에 대하여 고속카메라를 사용하여 가시화하였다. 또한 슐리렌, 이온프로브, 열전대 등을 사용하여 예열대 및 반응대의 두께를 측정하였다. 석송자 분진화염의 예열대 두께는 4~13 mm로 탄화수소가스의 예혼합기 화염보다도 수배 크다. 입자화상유속법(PIV)에 의한 해석 결과, 예열대에서의 미연소 입자의 체류 시간은 입자의 열분해가스 생성에 필요하며, 체류시간은 화염전파속도, 입자속도 및 예열대 두께에 의존하는 것을 알았다.
This study is to investigate experimentally the flame structure and propagation mechanism in dust explosions and to provide the fundamental knowledge. Upward propagating laminar dust flames in a vertical duct of 1.8 m height and 0.15 m square cross-section are observed and flame front is visualized using by a high-speed video camera. Also, the thicknesses of preheated and reaction zone have been determined by a schlieren, electrostatic probe and thermocouple. The thickness of preheated zone in lycopodium dust flame is observed to be 4~13 mm, about several orders of magnitude higher than that of premixed gaseous flames. From the experimental results by a PIV(Particle Image Velocimetry) system, a certain residence time of the unburned particle in preheated zone is needed to generate combustible gas from the particle. The residence time will depend on preheated zone thickness, particle velocity and flame propagation velocity.
  1. Dorsett HG, Jacobson M, Nagy J, Williams RP, RI 5624, U.S. Bureau of Mines, 1-21 (1960)
  2. Siwek R, Cesana C, Operating Instructions for the 20-L Apparatus, Adolf Huhner AG, CH-4052, Brisfelden, Switzerland (1986)
  3. ASTM E1226-88, Standard test method for pressure and rate of pressure rise for combustible dusts (1988)
  4. ISO. 6184/1-1985, Explosion pretection systems-Part 1 : Determination of explosion indices of combustible dust in air (1985)
  5. Eckhoff RK, Dust explosions in the process industries-3rd ed., Gulf professional publishing (2003)
  6. Proust C, Flame propagation and combustion in some dist-air mixtures, J. Loss Prev. in the Process Ind., 19, 89 (2006)
  7. Han OS, Yashima M, Matsuda T, Matsui H, Miyake A, Ogawa T, J. Loss Prev. in the Process Ind., 13, 449 (2000)
  8. Dahoe AE, Dust Explosion “A Study of Flame Propagation,” Delft Univ. of Tech. (2000)
  9. Van der P, Wel, “Ignition and Propagation of Dust Explosions,” Delft Univ. Press, Netherlands (1993)
  10. Chen JL, Dobashi R, Hirano T, J. Loss Prev. Process Ind., 9(3), 225 (1996)
  11. Proust C, Veyssiere B, Combustion Science and Technology, 62, 149 (1988)
  12. Raffel M, Willert C, Kompenhaus J, Springer-Verlag, Berlin Heidelberg (1998)
  13. Mei R, Experiments in Fluids, 22, 1 (1996)
  14. Okamoto K, Hassan YA, Schmidl WD, Experiments in Fluids, 19, 342 (1995)
  15. Kean RD, Adrian RJ, “Theory of Cross-correlation Analysis of PIV Images, in Flow Visualization and Image Analysis,” ed. F. T. M. Nieuwstadt, 1-25 (1993)
  16. Adrian RJ, Annual Review Fluid Mechanics, 23, 261 (1991)
  17. Thomas GO, Oakley G, Brenton J, Combust. Flame, 85, 526 (1991)
  18. Glinka W, Wang X, Wolanski P, Xie L, The 7th Intenational Colloquim on Dust Explosions, Norway (1996)
  19. Shepard CE, Warshawsky I, NACA TN 2703 (1952)
  20. Ballantyne A, Moss JB, Combustion Science and Technology, 17, 63 (1977)
  21. Lewis B, Von Elbe G, Combustion Flames and Explosions of Gases, 2nd edition, Academic Press Inc., New York, 292-294 (1961)
  22. Mason WE, Wilson MJG, Combus. Flame, 11, 195 (1967)