화학공학소재연구정보센터
Clean Technology, Vol.15, No.2, 122-129, June, 2009
Fe-베타제올라이트 상에서 아산화질소의 직접분해반응
Direct Decomposition of Nitrous Oxide over Fe-beta Zeolite
E-mail:
초록
철이 이온교환된 상업용 베타제올라이트를 450~900 ℃ 범위에서의 소성 및 수열처리 온도에 따른 이산화질소 직접분해 반응성을 관찰하였다. Fe-베타제올라이트의 특성분석을 위하여 XRD, N2 홉착 및 탈착, 27AI-NMR, XPS 분석을 수행하였다. 900 ℃에서의 소성처리 온도 및 750 ℃ 에서의 수열처리 후의 Fe-베타제올라이트의 비표면적 및 기공 부피는 30% 정도 감소하였지만, 감소 정도는 수열처리 후에 더욱 심각하게 관찰되었다. 하지만 격자 안의 AI은 이온 교환된 Fe에 의하여 900 ℃에서의 소성처리 후에도 낮은 탈알루미 늄화에 의해 얀정된 사면체 형태의 AI 상태를 유지하였다. 소성 및 수열처리 온도 증가에 따라 아산화질소의 분해반응 온도는 증가하였고 수열처리 후의 비활성화가 소성처리 후보다 심각하게 관찰되었다.
The effect ofcalcination temperature or hydrothermal treatment ofcommercial Fe-beta zeolites in the range of 450~900 ℃ were examined in the direct decomposition of N2O. Fe-beta zeolites used were characterized using XRD, N2 sorption,27AlMAS NMR and XPS. Although the surface area and micropore volume of Fe-beta zeolite after calcination at 900 ℃ and hydrothermal treatment at 750 ℃ decreased ca. 30%, a larger decrease in the surface area and micropore volume by hydrothermal treatment was observed than by calcination treatment alone. However, the Al sites in frameworks of zeolite were conserved in stable tetrahedral form resulting from low degree of dealumination which was related to the adjacent Fe ions on the Al sites. This could likely be correlated with the conservation of high surface area and micropore volume of Fe-beta zeolites. The increase in the calcination or hydrothermal treatment temperature caused the increase of decomposition temperature of N2O and the severe deactivation was observed after hydrothermal treatment than calcination treatment.
  1. Kapteijn F, Rodriguezmirasol J, Moulijn JA, Appl. Catal. B: Environ., 9(1-4), 25 (1996)
  2. Winter ERS, J. Catal., 19, 32 (1970)
  3. Paek JY, Park YS, Shun D, Bae DH, HWAHAK KONGHAK, 40(6), 746 (2002)
  4. Ohnishi C, Asano K, Iwamoto S, Chikama K, Inoue M, Catal. Today, 120(2), 145 (2007)
  5. Russo N, Mescia D, Fino D, Saracco G, Specchia V, Ind. Eng. Chem. Res., 46(12), 4226 (2007)
  6. Fierro G, Ferraris G, Dragone R, Iacono ML, Faticant M, Catal. Today, 16, 38 (2006)
  7. Perez-Ramirez I, Kaptejin F, Mul G, Moulijin J, Catal Commun, 3, 19 (2002)
  8. Leglise I, Petunchi JO, Hall WH, J. Catal, 86, 392 (1984)
  9. http://izasc.ethz.ch/fmi/xsl/lZA-SC/
  10. Jeon SH, Master thesis, Chungbuk National University (2007)
  11. Median F, Dutartre R, Tichit D, Coq B, Dung NT, Salagre P, J. Mol. Catal. A: Chem., 119, 201 (1997)
  12. Abraham A, Lee SH, Shin CH, Hong SB, Prins R, van Bikhoven JA, Phys. Chem. Chem. Phys., 6, 3031 (2004)
  13. Perez-Ramirez J, Kapteijn F, Bruckner A, J. Catal., 218(1), 234 (2003)
  14. Park JH, Choung JH, Nam IS, Ham SW, Appl. Catal. B: Environ., 78(3-4), 342 (2008)
  15. Barr TL, Seal S, He H, Klinowski L, Vacuum, 46, 1391 (1995)
  16. Waclaw A, Nowinska K, Schwieger W, Zielinska A, Catal. Today, 90(1-2), 21 (2004)