화학공학소재연구정보센터
Macromolecular Research, Vol.17, No.10, 729-733, October, 2009
The Effect of Annealing on sSEBS/Polyrotaxanes Electrolyte Membranes for Direct Methanol Fuel Cells
E-mail:
Solution casting films of sulfonated poly[styrene-b-(ethylene-r-butylene)-b-styrene] copolymer (sSEBS)-based composite membranes that contained different amounts of organic, nanorod-shaped polyrotaxane were annealed at various temperatures for 1 h. The films’ properties were characterized with respect to their use as polymer electrolyte membranes in direct methanol fuel cells (DMFCs). Different aspect ratios of polyrotaxane were prepared using the inclusion-complex reaction between α-cyclodextrin and poly(ethylene glycol). The presence of the organic polyrotaxane inside the membrane changed the morphology during the membrane preparation and reduced the transport of methanol. The conductivity and methanol permeability of the composite membranes decreased with increasing polyrotaxane content, while the annealing temperature increased. All of the sSEBS-based, polyrotaxane composite membranes annealed at 140 ℃ showed a higher selectivity parameter, suggesting their potential usage for DMFCs.
  1. Lee CH, Min KA, Park HB, Hong YT, Jung BO, Lee YM, J. Membr. Sci., 303(1-2), 258 (2007)
  2. Lee W, Kim H, Lee H, J. Membr. Sci., 320, 78 (2008)
  3. Tricoli V, Carretta N, Bartolozzi M, J. Electrochem. Soc., 147(4), 1286 (2000)
  4. Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41 (2004)
  5. Jung DH, Myoung YB, Cho SY, Shin DR, Peck DH, Int. J. Hydrogen Energy, 26, 1263 (2001)
  6. Kim DH, Kim SC, Macromol. Res., 16(5), 457 (2008)
  7. Kim D, Scibioh MA, Kwak S, Oh IH, Ha HY, Electrochem. Commun., 6, 1069 (2004)
  8. Baglio V, Arico AS, Di Blasi A, Antonucci V, Antonucci PL, Licoccia S, Traversa E, Fiory FS, Electrochim. Acta, 50(5), 1241 (2005)
  9. Honma I, Nakajima H, Nishikawa O, Sugimoto T, Nomura S, Solid State Ion., 162, 237 (2003)
  10. Won J, Kang YS, Macromol. Symp., 204, 79 (2003)
  11. Song MK, Park SB, Kim YT, Kim KH, Min SK, Rhee HW, Electrochim. Acta, 50(2-3), 639 (2004)
  12. Moon GY, Rhim JW, Macromol. Res., 16(6), 524 (2008)
  13. Kim DW, Choi HS, Lee C, Blumstein A, Kang Y, Electrochim. Acta, 50(2-3), 659 (2004)
  14. Won J, Choi SW, Kang YS, Ha HY, Oh IH, Kim HS, Kim KT, Jo WH, J. Membr. Sci., 214(2), 245 (2003)
  15. Lue SJ, Shih TS, Wei TC, Korean J. Chem. Eng., 23(3), 441 (2006)
  16. Lin YF, Yen CY, Hung CH, Hsiao YH, Ma CCM, J. Power Sources, 168(1), 162 (2007)
  17. Honma I, Hirakawa S, Yamada K, Bae JM, Solid State Ion., 118(1-2), 29 (1999)
  18. Nunes SP, Ruffmann B, Rikowski E, Vetter S, Richau K, J. Membr. Sci., 203(1-2), 215 (2002)
  19. Kim DS, Guiver MD, Seo MY, Cho HI, Kim DH, Rhim JW, Moon GY, Nam SY, Macromol. Res., 15(5), 412 (2007)
  20. Chisholm BJ, Moore RB, Barber G, Khouri F, Hempstead A, Larsen M, Olson E, Kelley J, Balch G, Caraher J, Macromolecules, 35(14), 5508 (2002)
  21. Harada A, KAachi M, Macromolecules, 23, 2821 (1990)
  22. Cho HD, Won J, Ha HY, Renewable Energy, 33, 248 (2008)
  23. Blackwell RI, Mauritz KA, Polymer, 45(10), 3457 (2004)
  24. Won J, Ahn SM, Cho HD, Ryu JY, Ha HY, Kang YS, Macromol. Res., 15(5), 459 (2007)
  25. Vargas MA, Vargas RA, Mellander BE, Electrochim. Acta, 44(24), 4227 (1999)
  26. Lee JH, Won J, Oh IH, Ha HY, Cho EA, Kang YS, Macromol. Res., 14(1), 101 (2006)
  27. Harada A, Li J, Kamachi M, Macromolecules, 26, 5690 (1993)
  28. Cho HD, Won JO, Ha HY, Kang YS, Macromol. Res., 14(2), 214 (2006)
  29. Wnek GE, Rider JN, Serpico JM, Einset AG, Proceedings of the first international symposium on proton conducting membrane fuel cells, Electrochemical Society, 1995, p 247
  30. Lu X, Steckle WP, Weiss RA, Macromolecules, 26, 6525 (1993)
  31. Yano K, Usuki A, Okada A, J. Polym. Sci. A: Polym. Chem., 35(11), 2289 (1997)